Identification method for invert-ible finite state machine with known output function | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/55

Identification method for invert-ible finite state machine with known output function

This paper presents some simple adaptive identification experiments with a finite state machine (FSM) A = (X, S, Y, taken from an exclusive class of invertible strongly connected deterministic FSM specified by a nondeterministic FSM R = (X, S, Y, Ф,^) with one or two transition variants. In R, a set S1 is a x/y-successor of a subset So С S if S1 = {s : 3s0 E S0 (s E & <^(x, s0) = y)}. A successor graph of the FSM R is an oriented graph constructed in the following way. Each non-empty subset S0 С S is represented by a node v(S0) of the graph. A node v(S0) is an end vertex if |S0| ^ 2. If a node v(S0) is not an end vertex, then there exists an edge labelled by x/y from this node to a node v(S1), where S1 is the x/y-successor of S0. A node v(S0) is decidable if it is an end vertex or there exists x0 such that all edges x0/y direct to decidable nodes. It is proved that if the node v(S) of the successor graph of the FSM R is decidable, then there exists a simple adaptive homing experiment with A. This fact results in the following method for identification of A. First, construct the successor graph of R and find the decidable nodes in it. Second, if the node v(S) is decidable, then carry out a simple adaptive homing experiment with A. At last, execute an identification experiment with A when the initial state of A is known. Methods for producing homing experiments and identification experiments with the initial FSM of an exclusive class are well known.

Download file
Counter downloads: 197

Keywords

простой условный эксперимент по идентификации автомата, сильносвязный автомат, обратимый автомат, finite state machines, successor graphs, identification experiments

Authors

NameOrganizationE-mail
Zhukovskaja A. O.Tomsk State Universityzhuka157@yandex.ru
Trenkaev V.N.Tomsk State Universitytvnik@sibmail.com
Всего: 2

References

Гилл А. Введение в теорию конечных автоматов. М.: Наука, 1966. 272 с.
Тренькаев В. Н. Реализация шифра Закревского на основе перестраиваемого автомата // Прикладная дискретная математика. 2010. №3. С. 69-77. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000462558
Жуковская А. О., Тренькаев В. Н. О простых условных экспериментах идентификации обратимых автоматов некоторого класса // Прикладная дискретная математика. Приложение. 2016. №9. С. 115. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000547628
 Identification method for invert-ible finite state machine with known output function | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/55

Identification method for invert-ible finite state machine with known output function | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/55