Threshold interpolations in solving nonlinear boolean equation by method of separating planes | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/64

Threshold interpolations in solving nonlinear boolean equation by method of separating planes

For solving non-linear Boolean equation, we consider implicative system of linear inequalities that can have the least number of inequalities and be solved more efficiently than equivalent system of linear inequalities. The implicative system of linear inequalities includes all the solutions of the original Boolean equation and can have another solutions, the number of which - so called deficit - also characterizes the quality of the implicative system. More exactly, for a fixed k, the system of linear inequalities aax1 + ... + ai„x„ ^ bi, i = 1,..., k, is called an implicative threshold k-interpolation of the Boolean equation f (x1,... ,xn) = 7 if all the solutions of this equation are the solutions of the system. As an alternative to this, a statistical threshold interpolation of Boolean function f (x1,... ,xn) is defined. It is a threshold Boolean function т(x1,...,xn) with the probability P(f(x1,...,xn) = = т(x1,... ,xn)) = 1/2 + 5, 5 > 0, where 5 is the quality of the interpolation. Using this notion instead of implicative interpolation can decrease the complexity of solving Boolean equations.

Download file
Counter downloads: 180

Keywords

метод разделяющих плоскостей, нелинейные булевы уравнения, пороговые функции, пороговые приближения, method of separating planes, non-linear Boolean equations, threshold functions, threshold interpolations

Authors

NameOrganizationE-mail
Nikonov V. G.Russian Academy of Natural Sciences
Shurupov A.N.Moscow State University of Information Technologies, Radio Engineering and Electronicsashurupov@mail.ru
Всего: 2

References

Балакин Г. В., Никонов В. Г. Методы сведения булевых уравнений к системам пороговых соотношений // Обозрение прикладной и промышленной математики. 1994. Т. 1. №3. С.389-401.
Рыбников К. К. Оценки сложности некоторых схем метода разделяющих плоскостей при решении систем булевых уравнений // Обозрение прикладной и промышленной математики. 2002. Т. 2. № 9. С. 442-443.
Анашкина Н. В., Шурупов А. Н. Применение алгоритмов локального поиска к решению систем псевдобулевых линейных неравенств // Прикладная дискретная математика. Приложение. 2015. №8. C. 136-138. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000510509
 Threshold interpolations in solving nonlinear boolean equation by method of separating planes | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/64

Threshold interpolations in solving nonlinear boolean equation by method of separating planes | Applied Discrete Mathematics. Supplement. 2017. № 10. DOI: 10.17223/2226308X/10/64