Weight properties of primitive matrices | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/2

Weight properties of primitive matrices

For non- negative n x n matrices (n > 2), the results of researching the dependence of matrix primitivity on weight (quantity of positive elements) are presented, namely: 1) any matrix of a weight k ^ n is not primitive; 2) for k = n + 1,..., n2 - n +1, there are both a not primitive matrix with weight k and a primitive matrix with weight k and exponent 7 where n+21_\/2(n - 1)J ^ 7+k ^ n2 - n+3; 3) any matrix with weight k £ {n2 - n+2,..., n2 - 1} is primitive and its exponent 7 =2. It is shown that, for some primitive matrices, the weight is not monotonically non-decreasing function of its degree.

Download file
Counter downloads: 173

Keywords

weight of matrix, exponent of matrix, primitive matrix, вес матрицы, экспонент матрицы, примитивная матрица

Authors

NameOrganizationE-mail
Kyazhin S. N.National Research Nuclear University "MEPhI"s.kyazhin@kaf42.ru
Всего: 1

References

Фомичев В. М. Свойства минимальных примитивных орграфов jj Прикладная дискретная математика. 2015. №2(28). С. 86-96.
Бар-Гнар Р. И., Фомичев В. М. О минимальных примитивных матрицах jj Прикладная дискретная математика. Приложение. 2014. №7. С. 7-9.
 Weight properties of primitive matrices | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/2

Weight properties of primitive matrices | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/2