Properties of a bent function construction by a subspace of an arbitrary dimension | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/12

Properties of a bent function construction by a subspace of an arbitrary dimension

Let f be a bent function in 2k variables, L be an affine subspace of F2k, and IndL be a Boolean function with values 1 on L. Here, we study the properties of the function f ф IndL. Particularly, we give some necessary and sufficient conditions under which the increase or decrease of the dimension of L by 1 doesn't change the property bent of f ф IndL. We prove that if the function f (x1,..., x2k) ф x2k+1x2k+2 ф Ind^ is a bent function and U is an affine subspace, then the function f ф IndL is a bent function for some affine subspace L of dimension dim U - 1 or dim U - 2. An example of bent function f in 10 variables for which f ф IndL is a bent function for only dim L ( {9,10} is provided.

Download file
Counter downloads: 152

Keywords

affinity, subspaces, bent functions, Boolean functions, аффинность, бент-функции, подпространства, булевы функции

Authors

NameOrganizationE-mail
Kolomeec N. A.Sobolev Institute of Mathematicskolomeec@math.nsc.ru
Всего: 1

References

Canteaut A, DaumM., Dobbertin H., and Leander G. Finding nonnormal bent functions // Discr. Appl. Math. V. 154. No. 2. P. 202-218.
Leander G. and McGuire G. Construction of bent functions from near-bent functions // J. Combin. Theory. Ser.A. 2009. V. 116. No.4. P.960-970.
Carlet C. Two new classes of bent functions // LNCS. 1994. V. 765. P. 77-101.
Tokareva N. N. Bent Functions, Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
Логачев О. А., Сальников А. А., Смышляев С. В., Ященко В. В. Булевы функции в теории кодирования и криптологии. 2-е изд. М.: МЦНМО, 2012. 584с.
Rothaus O. On bent functions // J. Combin. Theory. Ser.A. 1976. V.20. No.3. P. 300-305.
 Properties of a bent function construction by a subspace of an arbitrary dimension | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/12

Properties of a bent function construction by a subspace of an arbitrary dimension | Applied Discrete Mathematics. Supplement. 2018. № 11. DOI: 10.17223/2226308X/11/12