On the order of the frobenius EN-domorphism action on L-torsion subgroup of abelian sur | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/2

On the order of the frobenius EN-domorphism action on L-torsion subgroup of abelian sur

FACES. One of the most powerful tools for point-counting on elliptic curves over finite fields is the Schoof - Elkies - Atkin algorithm. Its main idea is to construct characteristic polynomials for the action of the Frobenius endomorphim on l-torsion group. In this work, we study a probabilistic approach to find these characteristic polynomials in case of abelian surface. To do this, we introduce a random variable £ that takes values from a list ri,..., rn, where r is a possible order of Frobenius action on l-torsion subgroup. As soon as we have an explicit distribution of orders, we can obtain a characteristic polynomial in more effective way than in a classical Schoof-like algorithm. In this work, we derive formulas for calculating variance and standard deviation of the random variable £: where ф(1) = 2li0 + 56l9 - 316l8 +134417 - 194816 - 177015 + 666014 - 351613 - 383112 + 46841 - 1369.

Download file
Counter downloads: 117

Keywords

абелевы поверхности, гиперэллиптические кривые, подсчёт числа точек, многочлен Фробениуса, Abelian surfaces, hyperelliptic curves, point-counting, Frobenius endomor-phism, l-torsion

Authors

NameOrganizationE-mail
Kolesnikov N. S.I. Kant Baltic Federal UniversityNiKolesnikov@stud.kantiana.ru
Novoselov S.A.I. Kant Baltic Federal Universitysnovoselov@kantiana.ru
Всего: 2

References

Schoof R. Counting points on elliptic curves over finite fields //J. Theor. Nombres Bordeaux. 1995. V.7. No. 1. P. 219-254.
Gaudry P. and Schost E. Genus 2 point counting over prime fields //J. Symb. Comput. 2012. V. 47. No. 4. P. 368-400.
Pila J. Frobenius maps of abelian varieties and finding roots of unity in finite fields // Mathematics of Computation. 1990. V. 55. No. 192. P. 745-763.
Novoselov S. A. and Kolesnikov N. S. On expected order of Frobenius action on l-torsion of abelian surfaces // Submitted at NuTMiC. 2019.
Diaconis P. and Erdos P. On the distribution of the greatest common divisor // Lecture Notes - Monograph Series. Institute of Mathematical Statistics. 2004. V. 45. P. 56-61.
 On the order of the frobenius EN-domorphism action on L-torsion subgroup of abelian sur | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/2

On the order of the frobenius EN-domorphism action on L-torsion subgroup of abelian sur | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/2

Download full-text version
Counter downloads: 2700