Mixing properties for some classes of permutations on f£
In the class Fn,k of permutations on F^ with coordinate functions essentially depending on exactly k variables, k < n, we consider two subclasses Sn,k and Pn,k. The method for constructing a function F(x1,..., xn) = (f-]_,..., fn) G G Sn,k starts from some function G(x1,...,xk) = (g1,...,gk) G Fk,k. Then we set fi(x1,... ,xn) = gi(x1,... ,xk) for i = 1,... ,k and fi(xb ... ,xn) = xi 0 hi(xb ... ,xi-1) for i = k + 1,... ,n, where hi is any function essentially depending on exactly k - 1 variables from ... ,xi-1. The method for constructing a function F G Pn,k is used in the case when k|n, i.e. n = sk for some s G N. We construct s functions G1,... ,Gs G Fk,k, Gi = ^1i) ,...,g<k)^j , i = 1,...,s, and set ftk+i(x1,... ,x,n) = gf+1)(xtk+1,... ,x (t+1)k), t = 0,...,s - 1, i = 1,... ,k. Mixing properties of such function are discussed, an algorithm for calculating elementary exponents is given.
Keywords
существенная зависимость функции от переменной, перемешивающие свойства функций, элементарный экспонент, матэкс, essential dependence of a function on a variable, mixing properties of the function, elementary exponentAuthors
Name | Organization | |
Karpova L.A. | Tomsk State University | lubakarpova1135@gmail.com |
Pankratova I. A. | Tomsk State University | pank@isc.tsu.ru |
References

Mixing properties for some classes of permutations on f£ | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/13