Properties of bent functions constructed by a given bent function using subspaces | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/14

Properties of bent functions constructed by a given bent function using subspaces

Properties of a construction f 0 IndL, where f is a bent function in 2k variables and L is an affine subspace, generating bent functions under some conditions are considered. It is proven that the numbers of bent functions generated by (k + 1)-dimensional subspaces for a given bent function and its dual function are equal. Some experimental results for bent functions in 6 and 8 variables reflecting the number of generated bent functions, equality and inequality of this number for a given bent function and its dual function and nonexistence of generated bent functions if subspaces have some fixed dimensions are presented. Theorem (2018) on subspace connections for bent functions f and f (x1,..., x2k) ф x2k+1x2k+2 (in context of the considered construction) is strengthened.

Download file
Counter downloads: 134

Keywords

булевы функции, бент-функции, подпространства, аффинность, Boolean functions, bent functions, subspaces, affinity

Authors

NameOrganizationE-mail
Kolomeec N. A.Institute of Mathematics S. L. Soboleva SB RASkolomeec@math.nsc.ru
Всего: 1

References

Коломеец Н. А. О некоторых свойствах конструкции бент-функций с помощью подпространств произвольной размерности // Прикладная дискретная математика. Приложение. 2018. №11. С. 41-43.
Rothaus O. On bent functions // J. Combin. Theory. Ser.A. 1976. V.20. No.3. P. 300-305.
Логачев О. А., Сальников А. А., Смышляев С. В., Ященко В. В. Булевы функции в теории кодирования и криптологии. 2-е изд. М.: МЦНМО, 2012. 584с.
Tokareva N. N. Bent Functions, Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
Carlet C. Two new classes of bent functions // LNCS. 1994. V. 765. P. 77-101.
McFarland R. L. A family of difference sets in non-cyclic groups // J. Combin. Theory. Ser. A. 1973. V. 15. P. 1-10.
 Properties of bent functions constructed by a given bent function using subspaces | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/14

Properties of bent functions constructed by a given bent function using subspaces | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/14

Download full-text version
Counter downloads: 2700