About the cubic part of the algebraic normal form of arbitrary bent functions | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/15

About the cubic part of the algebraic normal form of arbitrary bent functions

Maximally nonlinear Boolean functions in n variables, where n is even, are called bent functions. The algebraic normal form (ANF) is one of the most useful ways for representing Boolean functions. What can we say about ANF of bent functions? Is it true that linear, quadratic, cubic, etc. parts of bent functions can be arbitrary? Cases with linear and quadratic parts were studied previously. In this paper, we prove that cubic part of ANF of a bent function can not be arbitrary if n = 6, 8.

Download file
Counter downloads: 108

Keywords

булева функция, бент-функция, линейная функция, квадратичная функция, кубическая функция, однородная функция, Boolean function, bent function, linear function, quadratic function, cubic function, homogeneous function

Authors

NameOrganizationE-mail
Kuzmina T. A.Novosibirsk State Universitytanya11_95@mail.ru
Всего: 1

References

Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press. Elsevier, 2015.
Tokareva N. Algebraic Normal Form of a Bent Function: Properties and Restrictions. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2018/1160.
Черемушкин А. В. Методы аффинной и линейной классификации булевых функций // Труды по дискретной математике. М.: Физматлит, 2001. Т. 4. С. 273-314.
Langevin P. Classification of Boolean Quartics Forms in Eight Variables. http://langevin. univ-tln.fr/project/quartics/quartics.html.
 About the cubic part of the algebraic normal form of arbitrary bent functions | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/15

About the cubic part of the algebraic normal form of arbitrary bent functions | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/15

Download full-text version
Counter downloads: 2700