Linear decomposition of discrete functions in terms of shift-composition operation | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/21

Linear decomposition of discrete functions in terms of shift-composition operation

We investigate the shift-composition operation of discrete functions that arises under shift register's homomor-phisms. For an arbitrary function over a finite field, all right linear decompositions are described in terms of shift-composition. Moreover, we study the possibility for representing an arbitrary function by a shift-composition of three functions such that both external functions are linear. It is proved that in the case of a simple field, the concepts of reducibility and linear reducibility coincide for linear functions and quadratic functions that are linear in the external variable.

Download file
Counter downloads: 136

Keywords

дискретные функции, конечные поля, регистр сдвига, сдвиг-композиция, discrete functions, finite fields, shift register, shift-composition

Authors

NameOrganizationE-mail
Cherednik I. V.Russian Technological Universityp.n.v.k.s@mail.ru
Всего: 1

References

Солодовников В. И. Регистры сдвига и криптоалгоритмы на их основе. LAP LAMBERT Academic Publishing, 2017.
Солодовников В. И. Гомоморфизмы регистров сдвига в линейные автоматы // Дискретная математика. 2008. №4. C. 87-101.
ЛидлР, Нидеррайтер Г. Конечные поля. М.: Мир, 1988.
Солодовников В. И. Гомоморфизмы двоичных регистров сдвига // Дискретная математика. 2005. №1. C. 73-88.
Кузьмин А. С., Нечаев А. А., Шишкин В. А. Бент- и гипербент-функции над конечным полем // Труды по дискретной математике. 2007. №10. C. 97-122.
Черемушкин А. В. Аддитивный подход к определению степени нелинейности дискретной функции // Прикладная дискретная математика. 2010. №2. C. 22-33.
 Linear decomposition of discrete functions in terms of shift-composition operation | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/21

Linear decomposition of discrete functions in terms of shift-composition operation | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/21

Download full-text version
Counter downloads: 2700