Evaluation of mixing characteristics for merkle - damgard hash functions | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/33

Evaluation of mixing characteristics for merkle - damgard hash functions

The matrix-graph approach (MGA), which has been successfully applied to the evaluation of iterative block ciphers and key generators, is presented for the first time as a tool for estimating the mixing properties of hash algorithms. Feature of MGA application to hash functions is connected with the possibility of construction the mixing matrices which characterize dependence of the bits of the hash value on the bits of the input message. Mixing matrices of the order 512 + n are constructed for hash functions MD4, MD5, SHA-1, SHA-256, where n is the size of the digest produced by the compression function processing the 512-bit block of the input message (n = 128 for MD4 and MD5, n = 160 for SHA-1 and n = 256 for SHA-256). We calculate the local exponents of mixing matrices, i.e., for each matrix M, we obtain the smallest positive integer 7 such that for any natural т ^ 7 all the columns of MT with the numbers 513, 514,..., 512 + n are positive. The values of the local exponents are the lower bounds for the number of iterations, after which each bit of the output hash may essentially depend on all bits of the input message. The obtained values (7 = 21 for MD4, MD5, SHA-256 and 7 = 23 for SHA-1) indirectly indicate the similar mixing properties of the considered hash algorithms despite the increase of block length and complexity of the compression function.

Download file
Counter downloads: 118

Keywords

алгоритмы хэширования, структура Меркла - Дамгарда, матрично-графовый подход, перемешивающие свойства, hash functions, Merkle - Damgard structure, matrix-graph approach, mixing properties

Authors

NameOrganizationE-mail
Koreneva A.M.Security Code LLCalisa.koreneva@gmail.com
Всего: 1

References

Fomichev V. M., Avezova Ya. E., Koreneva A. M., and Kyazhin S. N. Primitivity and local primitivity of digraphs and nonnegative matrices // J. Appl. Industr. Math. 2018. V. 12. No. 3. P. 453-469.
Fomichev V.M., Koreneva A. M., Miftahutdinova A. R., and Zadorozhniy D. I. Evaluation of the maximum productivity for block encryption algorithms // VII Симп. «Современные тенденции в криптографии» CTCrypt 2018. https://ctcrypt.ru/files/files/2018/17_ Koreneva.pdf
Fomichev V. M. and Koreneva A. M. Mixing properties of modified additive generators // J. Appl. Industr. Math. 2017. V. 11. No. 2. P. 215-226.
Коренева А. М., Мартышин В. Н. Экспериментальное исследование экспонентов раундо-вых перемешивающих матриц обобщённых сетей Фейстеля // Прикладная дискретная математика. Приложение. 2016. №9. C. 48-51.
Авезова Я. Э. Современные подходы к построению хеш-функций на примере финалистов конкурса SHA-3 // Вопросы кибербезопасности. 2015. №3(11). C. 60-67.
Черемушкин А. В. Криптографические протоколы. Основные свойства и уязвимости: учеб. пособие для студ. учреждений высш. проф. образования. М.: Издательский центр «Академия», 2009. 272 с.
 Evaluation of mixing characteristics for merkle - damgard hash functions | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/33

Evaluation of mixing characteristics for merkle - damgard hash functions | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/33

Download full-text version
Counter downloads: 2700