Approximate algorithm for searching shortest path in multiservice network with constrained resource | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/52

Approximate algorithm for searching shortest path in multiservice network with constrained resource

In the paper, we consider the Resource Constrained Shortest Path problem (RCSP). This problem is NP-hard extension of a well-known shortest path problem in the directed graph G = (V, E). In the RCSP problem each arc e from E has a cost w(e) and additional weight functions ri(e), i = 1,..., k, which specifying its requirements from a finite set of resource. The RCSP problem has various practical applications, including design and operation of multi-service network. Nowadays, multi-service networks grow at a rapid pace. Therefore, it is relevant to search for a new approximation algorithms that can solve the RCSP problem quickly. This paper reviews existing approximation algorithms for the RCSP problem. A polynomial time ^-approximation algorithm RevTree based on node labeling method is presented in the paper. The main advantage of the RevTree algorithm over existing ones is its ability to produce e approximation of the RCSP problem in O(|V|2) time. For real networks, e can be calculate using values of w(e) and ri(e), e £ E. The paper provides a description of the RevTree algorithm and results of computational experiments, which justify the effectiveness of proposed algorithm.

Download file
Counter downloads: 123

Keywords

ресурсоограниченный кратчайший путь, алгоритмы на графах, оптимальная маршрутизация, компьютерные и мультисервисные сети, resource constrained shortest path, graph-based algorithm, optimal routing, computer and multi-service networks

Authors

NameOrganizationE-mail
Soldatenko A. A.Siberian Federal Universityglinckon@gmail.com
Всего: 1

References

Joksch H. C. The shortest route problem with constraints // J. Math. Analysis Appl. 1966. V. 14. P. 191-197.
Di Puglia Pugliese L. and Guerriero F. A survey of resource constrained shortest path-problems: exact solution approaches // J. Networks. 2013. V. 62. Iss. 3. P. 183-200.
Zhu X. and Wilhelm W. E. A three-stage approach for the resource-constrained shortest path as a sub-problem in column generation // J. Computers & Operations Research. 2012. V. 39. Iss. 2. P. 164-178.
Dumitrescu I. and Boland N. Improved preprocessing, labeling and scaling algorithms for the weight-constrained shortest path problem // J. Networks. 2003. V. 42. P. 135-153.
Jepsen M, Petersen B., Spoorendonk S., and Pisinger D. A branch-and-cut algorithm for the capacitated profitable tour problem // J. Discrete Optimization. 2014. V. 14. P. 78-96.
Horvath M. and Kis T. Solving resource constrained shortest path problems with LP-based methods // J. Computers & Operations Research. 2016. V. 73. P. 150-164.
Солдатенко А. А. Алгоритм оптимальной маршрутизации в мультисервисных телекоммуникационных сетях // Прикладная дискретная математика. Приложение. 2018. №11. С.122-127.
Кормен Т. Х., Лейзерсон Ч. И., Ривест Р. Л., Штайн К. Алгоритмы. Построение и анализ. М.: Вильямс, 2018. 1328с.
https://www.ibm.eom/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio. help/pdf/usrcplex.pdf-IBM Corp.: IBM ILOG CPLEX Optimizer Studio. CPLEX User's Manual. Version 12 Release 6, 2015.
Pathan A. K., Monowar M. M., and Khan S. Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test. CRC Press, 2017. 648 p.
 Approximate algorithm for searching shortest path in multiservice network with constrained resource | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/52

Approximate algorithm for searching shortest path in multiservice network with constrained resource | Applied Discrete Mathematics. Supplement. 2019. № 12. DOI: 10.17223/2226308X/12/52

Download full-text version
Counter downloads: 2700