Refractive bijections in Steiner triples | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/1

Refractive bijections in Steiner triples

The paper deals with refractive bijections in Steiner triples used in the construction of matroids and secret sharing schemes. Refractors are understood to mean mappings F of a quasigroup into itself satisfying the condition F(x * y) = F(x) * F(y) for any x = y. The necessary conditions for the existence of APN-bijections in GF(2n) are found, for N = 7 the superposition of any two refractive bijections is not refractive. It is found that for N = 9, 13 and 2n - 1 elements for odd n not divisible by three, there are three Steiner triples systems without common triples. Refractive bijections are proposed for systems of Steiner triples without common triples for N =13. A counterexample is obtained to the hypothesis that each homogeneous matroid defines a certain block scheme using sets of refractive bijections, for N = 7 such S, S', S" do not exist. Functions that are APN-bijections are given. The condition allowing to construct homogeneous matroids that are not reduced to block scheme used in secret sharing schemes using Steiner linear triples systems is revealed, and a refractive bijection that is not an APN-function is also found, for instance F(x) = x-3.

Download file
Counter downloads: 84

Keywords

преломляющие биекции, квазигруппы Штейнера, матроиды, refracting bijections, Steiner quasigroups, matroids

Authors

NameOrganizationE-mail
Vedunova M.Ural State Transport Universitymarina.vedunova.13.99@gmail.com
Geut K.Ural State Transport Universitygeutkrl@yandex.ru
Ignatova A.Ural State Transport Universityanastasiaignatova101@gmail.com
Titov S.Ural State Transport Universitysergey.titov@usaaa.ru
Всего: 4

References

Медведев Н. В., Титов С. С. Об однородных матроидах и блок-схемах // Прикладная дискретная математика. Приложение. 2017. №10. C. 21-23.
Идрисова В. А. Векторные 2-в-1 функции как подфункции взаимно однозначных APN-функций // Прикладная дискретная математика. Приложение. 2018. №11. С. 39-41.
Виткуп В. А. О специальном подклассе векторных булевых функций и проблеме существования APN-перестановок // Прикладная дискретная математика. Приложение. 2016. №9. С. 19-21.
Фролова А. А. Итеративная конструкция APN-функций // Прикладная дискретная математика. Приложение. 2013. №6. С. 24-25.
Холл М. Комбинаторика: пер. с англ. М.: Мир, 1970. 424с.
Ведунова М. В., Игнатова А. О., Геут К. Л. Блокировка линейных многообразий и тройки Штейнера // Прикладная дискретная математика. Приложение. 2019. №12. C. 93-95.
 Refractive bijections in Steiner triples | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/1

Refractive bijections in Steiner triples | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/1

Download full-text version
Counter downloads: 461