On homogeneous matroids corresponding to block-schemes | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/2

On homogeneous matroids corresponding to block-schemes

The paper deals with relationship of homogeneous matroids and block-schemes. This problem is related to the study of access structures of ideal perfect secrets sharing schemes. By homogeneous matroids we mean an equal degree of cycles, where, perhaps, not all subsets of this degree are cycles. If power of cycles is equal to five, then it is proved that homogeneous connected separating matroid will be uniform. However, if the matroid is connected and separating, then the dual matroid will be simple. It is proved that if each cycle of homogeneous separating connected matroid is a hyperplane, then a block-scheme corresponds to it.

Download file
Counter downloads: 77

Keywords

однородные матроиды, схемы разделения секрета, блок-схемы, циклы, homogeneous matroids, secret sharing schemes, block-schemes, cycles

Authors

NameOrganizationE-mail
Medvedev N. V.Ural State Transport Universityitcrypt@gmail.com
Titov S. S.Ural State Transport Universitysergey.titov@usaaa.ru
Всего: 2

References

Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. 288 с.
Welsh D. J. A. Matroid Theory. London: Academic Press, 1976.
Парватов Н. Г. Совершенные схемы разделения секрета // Прикладная дискретная математика. 2008. №2(2). С. 50-57.
Beimel A. and Livne N. On matroids and non-ideal secret sharing // TCC 2006. LNCS. 2006. V. 3876. P. 482-501.
Marti-Farre J. and Padro C. Secret sharing schemes on sparse homogeneous access structures with rank three // Electronic J. Combinatorics. 2004. No. 11(1). Research Paper 72. 16p.
Холл М. Комбинаторика. М.: Мир, 1970.
 On homogeneous matroids corresponding to block-schemes | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/2

On homogeneous matroids corresponding to block-schemes | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/2

Download full-text version
Counter downloads: 461