An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields
In this paper we present an algorithm for computing the Stickelberger ideal for multiquadratic fields K = Q(Vdi, ..., л/^П), where d = 1 (mod 4) for i = 1,...,n and d's are pair-wise co-prime. Our result is based on the work of R. Kucera [J. Number Theory 56, 1996]. We systematize the ideas of this work, put them into explicit algorithms, prove their correctness and complexity. For 2n = [K : Q], our algorithm runs for time (9(2n). We hope that the obtained results will serve as the first step towards solving the shortest vector problem for ideals of multi-quadratic fields, which is the core problem in lattice-based cryptography.
Keywords
мультиквадратичные поля, идеал Штикельбергера, элемент Штикельбергера, задача поиска короткого вектора, multiquadratic number field, Stickelberger ideal, Stickelberger element, the shortest vector problemAuthors
Name | Organization | |
Olefirenko D. O. | Immanuel Kant Baltic Federal University | denis_cooler_1@mail.ru |
Kirshanova E. A. | Immanuel Kant Baltic Federal University | elenakirshanova@gmail.com |
Malygina E. S. | Immanuel Kant Baltic Federal University | emalygina@kantiana.ru |
Novoselov S. A. | Immanuel Kant Baltic Federal University | snovoselov@kantiana.ru |
References

An algorithm for computing the Stickelberger elements for imaginary multiquadratic fields | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/3