On metrical properties of the set of self-dual bent functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/5

On metrical properties of the set of self-dual bent functions

For every bent function / its dual bent function / is uniquely defined. If / = / then / is called self-dual bent and it is called anti-self-dual bent if / = / ф 1. In this work we give a review of metrical properties of the set of self-dual bent functions. We give a complete Hamming distance spectrum between self-dual Maiorana - McFarland bent functions. The set of Boolean functions which are maximally distant from the set of self-dual bent functions is discussed. We give a characterization of automorphim groups of the sets of self-dual and anti-self-dual bent functions in n variables as well as the description of isometric mappings that define bijections between the sets of self-dual and anti-self dual bent functions. The set of isometric mappings which preserve the Rayleigh quotient of a Boolean function is given. As a corollary all isometric mappings which preserve bentness and the Hamming distance between bent function and its dual are given.

Download file
Counter downloads: 99

Keywords

булева функция, самодуальная бент-функция, расстояние Хэмминга, изометричное отображение, метрическая регулярность, группа автоморфизмов, отношение Рэлея, Boolean function, self-dual bent function, Hamming distance, isometric mapping, metrical regularity, automorphism group, Rayleigh quotient of Sylvester Hadamard matrix

Authors

NameOrganizationE-mail
Kutsenko A. V.Novosibirsk National Research State University; S. L. Sobolev Institute of Mathematics SB RASAlexandrKutsenko@bk.ru
Всего: 1

References

Rothaus O. On bent functions // J. Combin. Theory. Ser. A. 1976. V.20. No.3. P. 300-305.
Hou X.-D. Classification of self dual quadratic bent functions // Des. Codes Cryptogr. 2012. V.63. No. 2. P. 183-198.
Carlet C., Danielson L. E., Parker M. G., and Sole P. Self-dual bent functions // Int. J. Inform. Coding Theory. 2010. V. 1. P. 384-399.
Feulner T., Sok L., Sole P., and Wassermann A. Towards the classification of self-dual bent functions in eight variables // Des. Codes Cryptogr. 2013. V. 68. No. 1. P. 395-406.
Hyun J. Y., Lee H., and Lee Y. MacWilliams duality and Gleason-type theorem on self-dual bent functions // Des. Codes Cryptogr. 2012. V.63. No.3. P.295-304.
Luo G., Cao X., and Mesnager S. Several new classes of self-dual bent functions derived from involutions // Cryptogr. Commun. 2019. V. 11. No. 6. P. 1261-1273.
Mesnager S. Several new infinite families of bent functions and their duals // IEEE Trans. Inf. Theory. 2014. V. 60. No. 7. P. 4397-4407.
Rifa J. and Zinoviev V. A. On binary quadratic symmetric bent and almost bent functions. arXiv:1211.5257v3, 2019.
Sok L., Shi M., and Sole P. Classification and Construction of quaternary self-dual bent functions // Cryptogr. Commun. 2018. V. 10. No. 2. P. 277-289.
Janusz G. J. Parametrization of self-dual codes by orthogonal matrices // Finite Fields Appl. 2007. V. 13. No.3. P. 450-491.
Kutsenko A. V. The Hamming distance spectrum between self-dual Maiorana - McFarland bent functions //J. Appl. Industr. Math. 2018. V. 12. No. 1. P. 112-125.
Kutsenko A. Metrical properties of self-dual bent functions // Des. Codes Cryptogr. 2020. V. 88. No. 1. P. 201-222.
Kutsenko A. The group of automorphisms of the set of self-dual bent functions // Cryptogr. Commun. 2020.
Куценко А. В. О множестве расстояний Хэмминга между самодуальными бент-функциями // Прикладная дискретная математика. Приложение. 2016. №9. C. 29-30.
Куценко А. В. О некоторых свойствах самодуальных бент-функций // Прикладная дискретная математика. Приложение. 2018. №11. C. 44-46.
Куценко А. В. Изометричные отображения множества всех булевых функций в себя, сохраняющие самодуальность и отношение Рэлея // Прикладная дискретная математика. Приложение. 2019. №12. C. 55-58.
McFarland R. L. A family of difference sets in non-cyclic groups //J. Combin. Theory. Ser. A. 1973. V. 15. No. 1. P. 1-10.
MacWilliams F. J. and Sloane N. J. A. The Theory of Error-Correcting Codes. Amsterdam, New York, Oxford, North-Holland, 1983. 782 p.
Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся на минимальном расстоянии друг от друга // Прикладная дискретная математика. 2009. № 4. C. 5-20.
Облаухов А. К. О метрическом дополнении подпространств булева куба // Дискретный анализ и исследование операций. 2016. Вып. 23. №3. С. 93-106
Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press, Elsevier, 2015. 230 p.
Tokareva N. Duality between bent functions and affine functions // Discrete Math. 2012. V. 312. No. 3. P. 666-670.
Марков А. А. О преобразованиях, не распространяющих искажения // Избранные труды. Т. II. Теория алгорифмов и конструктивная математика, математическая логика, информатика и смежные вопросы. М.: МЦНМО, 2003. С. 70-93.
Tokareva N. N. The group of automorphisms of the set of bent functions // Discrete Math. Appl. 2010. V. 20. No. 5. P. 655-664.
Danielsen L. E., Parker M. G., and Sole P. The Rayleigh quotient of bent functions // LNCS. 2009. V. 5921. P. 418-432.
 On metrical properties of the set of self-dual bent functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/5

On metrical properties of the set of self-dual bent functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/5

Download full-text version
Counter downloads: 461