On the decomposition of a vectorial boolean function into a composition of two functions
In the paper, we prove that if a vectorial Boolean function F in n variables, deg(F) = d > 2, is decomposable, then the function F' = A2 о F о A1, where A1, A2 are arbitrary affine (n, n)-permutations, is also decomposable; and if F(x) = G(H(x)), max{deg(F), deg(H)} = d' < d, function H is invertible and deg(H-1) ^ d', then the function F = F + A0 is decomposable for any affine function A0. The construction of a decomposable vectorial Boolean function of the third degree in an arbitrary number of variables is presented. A computational experiment showed that all vectorial Boolean functions of the third degree in three variables are decomposable.
Keywords
векторная булева функция, декомпозиция, пороговая реализация, vectorial Boolean function, decomposition, threshold implementationAuthors
Name | Organization | |
Pintus G. M. | Novosibirsk State University | g.pintus@g.nsu.ru |
References

On the decomposition of a vectorial boolean function into a composition of two functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/8