Connections between quaternary and component boolean bent functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/10

Connections between quaternary and component boolean bent functions

This paper is about quaternary bent functions. Function д : Zn ^ Z4 is called quaternary in n variables. It was proven that bentness of a quaternary function g(x + 2y) = a(x, y) + 2b(x, y) doesn't directly depend on the bentness of Boolean functions b and a ф b. The number of quaternary bent functions in one and two variables is obtained with a description of properties of Boolean functions b and a ф b. Two simple constructions of quaternary bent functions in any number of variables are pre- n sented. The first one is given by the formula g(x1 + 2xn+1,..., xn + 2x2n) = 2xixi+n + cxj, i=1 c Е Z2 and j Е {1,... ,n}. The second construction allows one to get a bent function g'(x + 2y) = 3a(x, y) + 2b(x, y), where g(x + 2y) = a(x, y) + 2b(x, y) is bent.

Download file
Counter downloads: 73

Keywords

кватернарные функции, булевы функции, бент-функции, quaternary functions, Boolean functions, bent function

Authors

NameOrganizationE-mail
Shaporenko A. S.S. L. Sobolev Institute of Mathematics SB RAS; Novosibirsk State Universityshaporenko.alexandr@gmail.com
Всего: 1

References

Matsui M. Linear cryptanalysis method for DES cipher // Eurocrypt'1993. LNCS. 1994. V. 765. P. 386-397.
Adams C. Constructing symmetric ciphers using the CAST design procedure // Design, Codes, and Cryptography. 1997. V. 12. No.3. P. 283-316.
Hell M., Johansson T., Maximov A., and Meier W. A stream cipher proposal: Grain-128 // IEEE Intern. Symp. Inform. Theory. Seattle, WA, 2006. P. 1614-1618.
Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press, Elsevier, 2015. 230 p.
Kumar P. V., Scholtz R. A., and Welch L. R. Generalized bent functions and their properties // J. Combin. Theory. 1985. V. 40. No. 1. P. 90-107.
Sole P. and Tokareva N. Connections Between Quaternary and Binary Bent Functions // Cryptology ePrint Archive, Report 2009/544. http://eprint.iacr.org/.
Sole P. and Tokareva N. On quaternary and binary bent functions // Прикладная дискретная математика. Приложение. 2009. №1. С. 16-18.
 Connections between quaternary and component boolean bent functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/10

Connections between quaternary and component boolean bent functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/10

Download full-text version
Counter downloads: 461