On a secondary construction of quadratic APN functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/11

On a secondary construction of quadratic APN functions

Almost perfect nonlinear functions possess the optimal resistance to the differential cryptanalysis and are widely studied. Most known constructions of APN functions are obtained as functions over finite fields F2n and very little is known about combinatorial constructions in Fn. We consider how to obtain a quadratic APN function in n + 1 variables from a given quadratic APN function in n variables using special restrictions on new terms.

Download file
Counter downloads: 94

Keywords

vectorial Boolean function, APN function, quadratic function, secondary construction, векторная булева функция, APN-функция, квадратичная функция

Authors

NameOrganizationE-mail
Kalgin K. V.Institute of Computational Mathematics and Mathematical Geophysics SB RAS; S. L. Sobolev Institute of Mathematics SB RAS; Novosibirsk State Universitykalginkv@gmail.com
Idrisova V. A.S. L. Sobolev Institute of Mathematics SB RASvvitkup@yandex.ru
Всего: 2

References

Nyberg K. Differentially uniform mappings for cryptography. EUROCRYPT'93, LNCS, 1994, vol. 765, pp. 55-64.
Carlet C. Open questions on nonlinearity and on APN Functions. WAIFI 2014, LNCS, 2015, vol.9061, pp. 83-107.
Glukhov M. M. O priblizhenii diskretnykh funktsiy lineynymi funktsiyami [On the approximation of discrete functions by linear functions]. Matematicheskie Voprosy Kriptografii, 2016, vol. 7, no. 4, pp. 29-50. (in Russian)
Tuzhilin M. E. Pochti sovershennye nelineynye funktsii [APN-functions]. Prikladnaya Diskretnaya Matematika, 2009, no. 3(5), pp. 14-20. (in Russian)
Gorodilova A. A. Characterization of almost perfect nonlinear functions in terms of subfunctions. Discrete Math. Appl., 2016, vol.26, iss.4, pp. 193-202.
Idrisova V. A. On an algorithm generating 2-to-1 APN functions and its applications to "the big APN problem". Cryptogr. Commun., 2019, no. 11, pp. 21-39.
Beth T. and Ding C. On almost perfect nonlinear permutations. EUROCRYPT'93, LNCS, 1993, vol.765, pp. 65-76.
Yu Y., Wang M., and Li Y. A matrix approach for constructing quadratic APN functions. Des. Codes Cryptogr., 2014, no. 73, pp. 587-600.
Yu Y., Kaleyski N. S., Budaghyan L., and Li Y. Classification of Quadratic APN Functions with Coefficients in GF(2) for Dimensions up to 9. IACR Cryptol. ePrint Arch.: 1491, 2019.
Brinkmann M. and Leander G. On the classification of APN functions up to dimension five. Des. Codes Cryptogr., 2008, vol.49, iss. 1-3, pp. 273-288.
 On a secondary construction of quadratic APN functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/11

On a secondary construction of quadratic APN functions | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/11

Download full-text version
Counter downloads: 461