Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation
We propose a simple method of constructing S-boxes using Boolean functions and permutations. Let n be an arbitrary permutation on n elements, f be a Boolean function in n variables. Define a vectorial Boolean function Fn : Fn ^ Fn as Fn(x) = = (f (x), f (n(x)), f (n2(x)),..., f (nn-1(x))). We study cryptographic properties of Fn such as high nonlinearity, balancedness, low differential ^-uniformity in dependence on properties of f and n for small n.
Keywords
Boolean function, vectorial Boolean function, S-box, high nonlinearity, balancedness, low differential 8-uniformity, high algebraic degree, булева функция, векторная булева функция, S-блок, высокая нелинейность, сбалансированность, низкая дифференциальная равномерность, высокая алгебраическая степеньAuthors
Name | Organization | |
Zyubina D. A. | S. L. Sobolev Institute of Mathematics SB RAS; Novosibirsk State University | d.zyubina@g.nsu.ru |
Tokareva N. N. | S. L. Sobolev Institute of Mathematics SB RAS; Novosibirsk State University | tokareva@math.nsc.ru |
References

Cryptographic properties of a simple S-box construction based on a Boolean function and a permutation | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/13