Geometric condition of formal grammars solvability | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/31

Geometric condition of formal grammars solvability

In this paper, we continue the development of a method for studying formal grammars, which means systems of non-commutative polynomial equations. Such systems are solved in the form of formal power series (FPS) that represent non-terminal alphabet characters through terminal alphabet characters; the first component of the solution is a formal language. The method developed by the authors is based on the study of the commutative image of grammar and formal language. Namely, every FPS is associated with its commutative image, which is obtained if we assume that all symbols are commutative variables. A theorem that gives a sufficient geometric condition for the formal grammar to have a unique solution in the form of FPS is obtained: if the commutative images of non-commutative equations of a system define smooth complex analytical hypersurfaces at the point 0, and the normals to them drawn from this point are linearly independent, then the system of non-commutative equations has a unique solution in the form of FPS.

Download file
Counter downloads: 72

Keywords

системы полиномиальных уравнений, некоммутативные переменные, формальный степенной ряд, коммутативный образ, аналитичекая гиперповерхность, systems of polynomial equations, non-commutative variables, formal power series, commutative image, analytic hypersurface

Authors

NameOrganizationE-mail
Egorushkin O.I.Siberian State University of Science and Technology named after academician M.F. Reshetnevaolegegoruschkin@yandex.ru
Kolbasina I.V.Siberian State University of Science and Technology named after academician M.F. Reshetnevakabaskina@yandex.ru
Safonov K. V.Siberian State University of Science and Technology named after academician M.F. Reshetnevasafonovkv@rambler.ru
Всего: 3

References

Егорушкин О. И., Колбасина И. В., Сафонов К. В. О совместности систем символьных полиномиальных уравнений и их приложении // Прикладная дискретная математика. Приложение. 2016. №9. С. 119-121.
Egorushkin O. I., Kolbasina I. V., and Safonov K. V. On solvability of systems of symbolic polynomial equations // Журн. СФУ. Сер. Матем. и физ. 2016. Т. 9. Вып. 2. С. 166-172.
Глушков В. М., Цейтлин Г. Е., Ющенко Е. Л. Алгебра. Языки. Программирование. Киев: Наукова думка, 1973.
Salomaa A. and Soitolla M. Automata-Theoretic Aspects of Formal Power Series. N.Y.: Springer Verlag, 1978.
Семёнов А. Л. Алгоритмические проблемы для степенных рядов и контекстно-свободных грамматик // Доклады АН СССР. 1973. №212. С. 50-52.
Сафонов К. В., Егорушкин О. И. О синтаксическом анализе и проблеме В. М. Глушкова распознавания контекстно-свободных языков Хомского // Вестник Томского госуниверситета. 2006. Приложение №17. С. 63-67.
Сафонов К. В. Об условиях алгебраичности и рациональности суммы степенного ряда // Матем. заметки. 1987. Т. 41. Вып.3. С. 325-332.
Safonov K. V. On power series of algebraic and rational functions in Cn // J. Math. Analysis Appl. 2000. V. 243. P. 261-277.
 Geometric condition of formal grammars solvability | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/31

Geometric condition of formal grammars solvability | Applied Discrete Mathematics. Supplement. 2020. № 13. DOI: 10.17223/2226308X/13/31

Download full-text version
Counter downloads: 461