On derivatives of boolean bent functions | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/11

On derivatives of boolean bent functions

Bent function can be defined as a Boolean function f(x) in n variables (n is even) such that for any nonzero vector y its derivative Dyf(x) = f(x) ф f(x ф y) is balanced, that is, it takes values 0 and 1 equally often. Whether every balanced function is a derivative of some bent function or not is an open problem. In this paper, special case of this problem is studied. It is proven that every non-constant affine function in n variables, n > 4, n is even, is a derivative of (2n_1 - 1)|Bn_2|2 bent functions, where |Bn_2| is the number of bent functions in n - 2 variables. New iterative lower bounds for the number of bent functions are presented.

Download file
Counter downloads: 30

Keywords

derivatives of bent function, lower bounds for the number of bent functions, bent functions, Boolean functions

Authors

NameOrganizationE-mail
Shaporenko A.S.Institute of Mathematics. S. L. Sobolev SB RAS; Novosibirsk State University; JetBrains Research Cryptography Laba.shaporenko@g.nsu.ru
Всего: 1

References

Canteaut A and Charpin P. Decomposing bent functions // IEEE Trans. Inform. Theory. 2003. V. 49. No. 8. P. 2004-2019.
Tokareva N. On the number of bent functions from iterative constructions: lower bounds and hypotheses // Adv. Math. Commun. 2011. V. 5. No. 4. P. 609-621.
Tokareva N. Bent Functions: Results and Applications to Cryptography. Acad. Press., 2015.
Токарева Н. Н. О множестве производных булевой бент-функции // Прикладная дискретная математика. Приложение. 2016. № 9. С. 35.
Hell M., Johansson T., Maximov A., and Meier W. A stream cipher proposal: Grain-128 // IEEE Intern. Symp. Inform. Theory. 2006. P. 1614-1618.
Adams C. Constructing symmetric ciphers using the CAST design procedure // Design, Codes, Cryptogr. 1997. V. 12. No. 3. P. 283-316.
Rothaus O. S. On bent functions //J. Combinat. Theory. Ser. A. 1976. V. 20. No. 3. P. 300-305.
Matsui M. Linear cryptanalysis method for DES cipher // LNCS. 1994. V. 765. P. 386-397.
 On derivatives of boolean bent functions | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/11

On derivatives of boolean bent functions | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/11

Download full-text version
Counter downloads: 494