On ARX-like ciphers based on different codings of 2-groups with a cyclic subgroup of index 2 | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/22

On ARX-like ciphers based on different codings of 2-groups with a cyclic subgroup of index 2

A large number of block ciphers are based on easily and efficiently implemented group operations on 2-groups such as the additive group of the residue ring Z2m , the additive group of the vector space Vm (2) over GF(2) and their combination. ARX-like ciphers use the operations of cyclic shifts and additions in Z2m, Vm(2). For developing techniques of building and analysing new symmetric-key block ciphers, we study group properties of m-bit ARX-like ciphers based on regular groups generated by (0,1,. . . ,2m- 1) and different codings of permutation representations of nonabelian 2-groups with a cyclic subgroup of index 2. There are exactly four isomorphism classes of the nonabelian 2-groups such as the dihedral group D2m , the generalized quaternion group Q2m , the quasidihedral group SD2m and the modular maximal-cyclic group M2m . For such groups, we get imprimitivity criterions and give conditions on codings in order that the group of the ARX-like cipher should be equal to the symmetric group S2m . We also provide examples of three natural codings and their group properties.

Download file
Counter downloads: 26

Keywords

quasidihedral group, modular maximal-cyclic group, dihedral group, generalized quaternion group, primitive group, ARX-ciphers

Authors

NameOrganizationE-mail
Pogorelov B. A.Academy of Cryptography of the Russian Federation
Pudovkina M. A.Moscow State Technical University N.E.Baumanmaricap@rambler.ru
Всего: 2

References

Погорелов Б. А. Примитивные группы подстановок, содержащие 2т-цикл // Алгебра и логика. 1980. Т. 19. № 2. С. 236-247.
Бабаш А.В., Шанкин Г.П. Криптография. М.: СОЛОН-Р, 2002. 512 с.
Paterson K. G. Imprimitive permutation groups and trapdoors in iterated block ciphers // LNCS. 1999. V. 1636. P. 201-214.
Погорелов Б. А., Пудовкина М. А. Надгруппы аддитивных регулярных групп порядка 2m кольца вычетов и векторного пространства // Дискретная математика. 2015. Т. 27. № 3. С. 74-94.
Grossman E. Group Theoretic Remark on Cryptographic System Based on Two Types of Additions. Math. Sc. Dept. IBM Watson res. Center Yorktown Heights, 1974.
Dixon J.D. and Mortimer B. Permutation Groups. Berlin: Springer Verlag, 1996. 346p.
Погорелов Б. А., Пудовкина М. А. Неабелевость группы наложения ключа и свойство ®w-MapkoeocTu алгоритмов блочного шифрования // Матем. вопр. криптогр. 2020. Т. 11. № 4. С. 3-22.
Холл М. Теория групп. М.: ИЛ, 1962. 468 с.
Погорелов Б.А., Пудовкина М. А. О классе степенных кусочно-аффинных подстановок на неабелевой группе порядка 2m, обладающей циклической подгруппой индекса два // Прикладная дискретная математика. Приложение. 2019. №12. С. 27-29.
Погорелов Б.А., Пудовкина М. А. Вариации ортоморфизмов и псевдоадамаровых преобразований на неабелевой группе // Прикладная дискретная математика. Приложение. 2019. №12. С. 24-27.
Погорелов Б. А., Пудовкина М. А. Подстановочные представления неабелевых 2-групп с циклической подгруппой индекса 2 // Матем. вопр. криптогр. 2021. Т. 12. (в печати)
Rivest R. L., Robshaw M. J. B., Sidney R., and Yin Y. L. The RC6 Block Cipher. V1.1, AES Proposal. 1998. http://www.rsa.com/rsalabs/aes.
Beaulieu R., Shors D., Smith J., et al. The SIMON and SPECK Families of Lightweight Block Ciphers. Cryptology ePrint Archive. 2013. https://eprint.iacr.org/2013/404.
Wheeler D. J. and Needham R. M. TEA, a Tiny Encryption Algorithm // LNCS. 1995. V. 1008. P. 363-366.
Rivest R. L. The RC5 encryption algorithm // LNCS. 1995. V. 1008. P. 86-96.
 On ARX-like ciphers based on different codings of 2-groups with a cyclic subgroup of index 2 | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/22

On ARX-like ciphers based on different codings of 2-groups with a cyclic subgroup of index 2 | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/22

Download full-text version
Counter downloads: 494