Some subgroups of the burnside group | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/43

Some subgroups of the burnside group

Bo(2,5). Let Bo(2,5) = (x,y> be the largest finite two generator Burnside group of exponent five and order 534. We study a series of subgroups Hi = (ai,bi> of the group Bo(2, 5), where a0 = x, b0 = y, ai = ai-1bi_1 and bi = bi-1 ai-1 for i G N. It has been found that H4 is a commutative group. Therefore, H5 is a cyclyc group and the series of subgroups is broken. The elements a4 = xy2xyx2y2x2yxy2x and b4 = yx2yxy2x2y2xyx2y of length 16 generate an abelian subgroup of order 25 in Bo(2, 5). Using computer calculations, we have found that there is no other pair of group words of length less than 16 that generate a noncyclic abelian subgroup in Bo(2, 5).

Download file
Counter downloads: 26

Keywords

non-commutative cryptography, Burnside group

Authors

NameOrganizationE-mail
Kuznetsov A. A.Siberian State University of Science and Technology named after Academician M.F. Reshetnevalex_kuznetsov80@mail.ru
Kuznetsova A. S.Krasnoyarsk State Agrarian Universityalexakuznetsova85@gmail.com
Всего: 2

References

Shor P. Algorithms for quantum computation: Discrete logarithms and factoring // Proc. 35th Ann. Symp. Foundations Comput. Sci. 1994. P. 124-134.
Baumslag G., Fazio N., Nicolosi A. R., et al. Generalized learning problems and applications to non-commutative cryptography // LNCS. 2011. V. 6980. P. 324-339.
Fazio N., Iga K., Nicolosi A. R., et al. Hardness of learning problems over Burnside groups of exponent 3 // Designs, Codes Cryptogr. 2015. V. 75(1). P. 59-70.
Kahrobaei D. and Noce M. Algorithmic problems in Engel groups and cryptographic applications // Intern. J. Group Theory. 2020. V. 9(4). P. 231-250.
Havas G., Wall G., and Wamsley J. The two generator restricted Burnside group of exponent five // Bull. Austral. Math. Soc. 1974. No. 10. P. 459-470.
Кузнецов А. А. Об одной подгруппе бернсайдовой групы B0(2, 5) // Тр. Института математики и механики УрО РАН. 2011. Т. 17. №4. C. 176-180.
Кузнецов А. А., Кузнецова А. С. Быстрое умножение элементов в конечных двупорождённых группах периода пять // Прикладная дискретная математика. 2013. № 1(19). C. 110-116.
 Some subgroups of the burnside group | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/43

Some subgroups of the burnside group | Applied Discrete Mathematics. Supplement. 2021. № 14. DOI: 10.17223/2226308X/14/43

Download full-text version
Counter downloads: 494