Invariant subspaces of functions affine equivalent to the finite field inversion | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/1

Invariant subspaces of functions affine equivalent to the finite field inversion

In the paper, we consider a ne Fp-subspaces of a nite eld Fpn, p is prime, such that the function x

Download file
Counter downloads: 25

Keywords

finite fields, inversion, affine subspaces, invariant subspaces

Authors

NameOrganizationE-mail
Kolomeec Nikolay A.Institute of Mathematics. S. L. Sobolev SB RASkolomeec@math.nsc.ru
Bykov Denis A.Institute of Mathematics. S. L. Sobolev SB RAS; Novosibirsk State Universityden.bykov.2000i@gmail.com
Всего: 2

References

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf. FIPS Publ. 197. Advanced Encryption Standard. 2001.
Daemen J. and Rijmen V. The Design of Rijndael: AES - the Advanced Encryption Standard. Springer Verlag, 2002.
Caranti A., Volta F., and Sala M. Imprimitive permutations groups generated by the round functions of key-alternating block ciphers and truncated differential cryptanalysis. https: //arxiv.org/abs/math/0606022. 2006.
Caranti A., Volta F., and Sala M. An application of the O'Nan-Scott theorem to the group generated by the round functions of an AES-like cipher // Des. Codes Cryptogr. 2009. V. 52. P.293-301.
Caranti A., Volta F., and Sala M. On some block ciphers and imprimitive groups // Appl. Algebra Eng.Commun.Comput. 2009. V. 20. P. 339-350.
Leander G., Abdelraheem M. A., AlKhzaimi H., and Zenner E. A cryptanalysis of PRINTcipher: The invariant subspace attack // LNCS. 2011. V. 6841. P. 206-221.
Трифонов Д. И., Фомин Д. Б. Об инвариантных подпространствах в XSL-шифрах // Прикладная дискретная математика. 2021. № 54. C 58-76.
Todo Y., Leander G., and Sasaki Y. Nonlinear invariant attack: practical attack on full SCREAM, iSCREAM, and Midori64 // ASIACRYPT 2016. LNCS. 2016. V. 10032. P. 3-33.
Буров Д. А. О существовании нелинейных инвариантов специального вида для раундовых преобразований XSL-алгоритмов // Дискретная математика. 2021. Т. 33. №2. C. 31-45.
Mattarei S. Inverse-closed additive subgroups of fields // Israel J. Math. 2007. V. 159. P. 343-347.
Goldstein D., Guralnick R., Small L., and Zelmanov E. Inversion-invariant additive subgroups of division rings // Pacific J. Math. 2006. V. 227. P. 287-294.
Nyberg K. Differentially uniform mappings for cryptography // LNCS. 1994. V. 765. P. 55-64.
Carlet С. Open questions on nonlinearity and on APN Functions // LNCS. 2015. V. 9061. P. 83-107.
Hua L.-K. Some properties of a sfield // Proc. NAS USA. 1949. V. 35. P. 533-537.
 Invariant subspaces of functions affine equivalent to the finite field inversion | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/1

Invariant subspaces of functions affine equivalent to the finite field inversion | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/1

Download full-text version
Counter downloads: 783