Properties of subfunctions of self-dual bent functions
Boolean functions in an even number of variables with at Walsh - Hadamard spectrum are called bent functions. For every bent function, say f, its dual bent function, denoted by e f, is uniquely de ned. If e f = f, then f is called self-dual bent, and in the case e f = f 1 it is called an anti-self-dual bent. In this paper, we study subfunctions of self-dual bent functions obtained by a xation of the rst and the rst two coordinates. We characterize subfunctions in n
Download file
Counter downloads: 16
Keywords
self-dual bent function, subfunction, near-bent function, Rayleigh quotient of the Sylvester Hadamard matrixAuthors
Name | Organization | |
Kutsenko Alexandr V. | Institute of Mathematics. S. L. Sobolev SB RAS; Novosibirsk State University | alexandrkutsenko@bk.ru |
References
Rothaus O. On bent functions //j.Combin. Theory. Ser. A. 1976. V. 20. No. 3. P. 300-305.
Carlet C., Danielsen L. E., Parker M. G., and Sole P. Self-dual bent functions // Int. J. Inform. Coding Theory. 2010. V. 1. P. 384-399.
Hou X.-D. Classification of self dual quadratic bent functions // Des. Codes Cryptogr. 2012. V. 63. No. 2. P. 183-198.
Feulner T., SokL., SoleP., and Wassermann A. Towards the classification of self-dual bent functions in eight variables // Des. Codes Cryptogr. 2013. V. 68. No. 1. P. 395-406.
Luo G., Cao X., and Mesnager S. Several new classes of self-dual bent functions derived from involutions // Cryptogr.Commun. 2019. V. 11. No. 6. P. 1261-1273.
Li Y., Kan H., Mesnager S., et al. Generic constructions of (Boolean and vectorial) bent functions and their consequences // IEEE Trans. Inform. Theory. 2022. V. 68. No. 4. P. 27352751.
Wolfmann A. Special bent and near-bent functions // Adv. Math.Commun. 2014. V. 8. No. 1. P. 21-33.
Danielsen L. E., Parker M. G., and Solee P. The Rayleigh quotient of bent functions // LNCS. 2009. V. 5921. P. 418-432.
Canteaut A. and Charpin P. Decomposing bent functions // IEEE Trans. Inf. Theory. 2003. V. 49. No. 8. P. 2004-2019.
Preneel B., Van Leekwijck W., Van Linden L., et al. Propagation characteristics of Boolean functions // LNCS. 1990. V. 473. P. 161-173.
Kutsenko A. Metrical properties of self-dual bent functions // Des. Codes Cryptogr. 2020. V. 88. No. 1. P. 201-222.

Properties of subfunctions of self-dual bent functions | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/7
Download full-text version
Counter downloads: 783