Polynomial grammars generating an infinite set of languages | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/20

Polynomial grammars generating an infinite set of languages

We continue the study of formal grammars, by which we mean systems of polynomial equations with respect to noncommutative variables, which are solved in the form of formal power series expressing nonterminal alphabet symbols through terminal alphabet symbols. The first component of the solution is a formal language. The definition of a grammar having infinitely many solutions (generating an infinite number of languages) is considered. Such grammars can arise in a situation, where the Jacobian of the commutative image of the grammar is identically equal to zero. It is shown that in the case of the Jacobian, which is identically equal to zero, it is more difficult to describe the set of grammatical solutions than for similar polynomial systems with real or complex variables, since all possible situations can be realized: such a grammar may have infinitely many solutions, any finite number of solutions, or no solutions at all.

Download file
Counter downloads: 16

Keywords

polynomial grammars, noncommutative variables, formal power series, commutative image, Jacobian

Authors

NameOrganizationE-mail
Egorushkin Oleg I.Siberian State University of Science and Technology named after academician M. F. Reshetnevolegegoruschkin@yandex.ru
Kolbasina Irina V.Siberian State University of Science and Technology named after academician M. F. Reshetnevkabaskina@yandex.ru
Safonov Konstantin V.Siberian State University of Science and Technology named after academician M. F. Reshetnevsafonovkv@rambler.ru
Всего: 3

References

Глушков В. М., Цейтлин Г. Е., Ющенко Е. Л. Алгебра. Языки. Программирование. Киев: Наукова думка, 1973.
Salomaa A. and Soitolla M. Automata-Theoretic Aspects of Formal Power Series. N.Y.: Springer Verlag, 1978.
Егорушкин О.И., Колбасина И.В., Сафонов К. В. О совместности систем символьных полиномиальных уравнений и их приложении // Прикладная дискретная математика. Приложение. 2016. № 9. С. 119-121.
Egorushkin O. I., Kolbasina I. V., and Safonov K. V. On solvability of systems of symbolic polynomial equations // Журн. СФУ. Сер. Матем. и физ. 2016. Т. 9. Вып. 2. С. 166-172.
Семёнов А. Л. Алгоритмические проблемы для степенных рядов и контекстно-свободных грамматик // Доклады АН СССР. 1973. №212. С. 50-52.
 Polynomial grammars generating an infinite set of languages | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/20

Polynomial grammars generating an infinite set of languages | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/20

Download full-text version
Counter downloads: 783