About the uniqueness of the minimal 1-edge extension of a hypercube | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/26

About the uniqueness of the minimal 1-edge extension of a hypercube

A graph G is a k-edge extension of a graph G if every graph obtained by removing any k edges from G contains G. A k-edge extention G of a graph G is said to be minimal if it contains n vertices, where n is the number of vertices in G, and G has the minimum number of edges among all k-edge extensions of the graph G with n vertices. The hypercube Qn is a regular 2n-vertex graph of order n, which is the Cartesian product of n complete 2-vertex graphs K2. We propose a family of graphs Q n whose representatives for n > 1 are minimal 1-edge extensions of the corresponding hypercubes. The computational experiment showed that for n 6 4 these extensions are unique up to isomorphism. In this paper, we succeeded in obtaining an analytical proof of the uniqueness of minimal 1-edge extensions of hypercubes for n 6 4, as well as establishing one general property of an arbitrary minimal 1-edge extension of a hypercube for n > 2.

Download file
Counter downloads: 15

Keywords

graph, hypercube, edge fault tolerance, minimal 1-edge extension

Authors

NameOrganizationE-mail
Lobov Alexandr A.Saratov National Research State University named after N. G. Chernyshevskyaisanekai@mail.ru
Abrosimov Mihail B.Saratov National Research State University named after N. G. Chernyshevskymic@rambler.ru
Всего: 2

References

Padua D. A. Encyclopedia of Parallel Computing. N.Y.: Springer, 2011.
Абросимов М. Б. Графовые модели отказоустойчивости. Саратов: Изд-во Сарат. ун-та, 2012. 192 с.
Hayes J. P. A graph model for fault-tolerant computing system // IEEE Trans.Comput. 1976. V.C.25. No. 9. P. 875-884.
Harary F. and Hayes J. P. Edge fault tolerance in graphs // Networks. 1993. V. 23. P. 135-142.
Лобов А. А., Абросимов М. Б. О вершинном 1-расширении гиперкуба // Компьютерные науки и информационные технологии: Материалы Междунар. науч. конф. Саратов: Из-дат. центр «Наука», 2018. С. 249-251.
Лобов А. А., Абросимов М. Б. О минимальном рёберном 1-расширении гиперкуба // Прикладная дискретная математика. Приложение. 2018. № 11. С. 109-111.
Harary F., Hayes J. P., and Wu H.-J. A survey of the theory of hypercube graphs // Computers & Math. with Appl. 1988. V. 15. Iss. 4. P. 277-289.
Абросимов М. Б. О сложности некоторых задач, связанных с расширениями графов // Матем. заметки. 2010. № 5(88). С. 643-650.
 About the uniqueness of the minimal 1-edge extension of a hypercube | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/26

About the uniqueness of the minimal 1-edge extension of a hypercube | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/26

Download full-text version
Counter downloads: 783