One family of optimal graphs with prescribed connectivities | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/28

One family of optimal graphs with prescribed connectivities

The vertex connectivity k is the smallest number of vertices whose removal leads to a disconnected or trivial graph. The edge connectivity of a nontrivial graph is the smallest number of edges whose removal leads to a disconnected graph. In this paper, we study n-vertex graphs that are minimal in terms of the number of edges and have given values of vertex and edge connectivity. In addition to theoretical interest, graphs with given values of vertex or edge connectivity are also of applied interest as models of fault-tolerant networks. The main result is that, for a certain range of values of k and , we describe the graphs that, for a given n, have the minimum number of edges d n=2e. The corresponding graph is either regular of order or has one vertex of degree + 1, and the remaining vertices of degree .

Download file
Counter downloads: 16

Keywords

graph, vertex connectivity, edge connectivity, fault tolerance

Authors

NameOrganizationE-mail
Terebin Bogdan A.Saratov National Research State University named after N. G. Chernyshevskybogdan.terebin@yandex.ru
Abrosimov Mihail B.Saratov National Research State University named after N. G. Chernyshevskymic@rambler.ru
Всего: 2

References

Whitney H. Congruent graphs and the connectivity of graphs // Amer. J. Math. 1932. V. 54. Iss.1. P.150-168.
Harary F. The maximum connectivity of a graph // Proc. NAS USA. 1962. V. 48. P. 1142-1146.
Chartrand G. and Harary F. Graphs with prescribed connectivities // Theory of Graphs. N.Y.: Academic Press, 1968. P. 61-63.
Steiglitz K., Weiner P., and Kleitman D. The design of minimum-cost survivable networks // IEEE Trans. Circuit Theory. 1969. V. 16. No. 4. P. 455-460.
Jafarpour M., Shekaramiz M., Javan A., and Moeini A. Building graphs with maximum connectivity // Proc. IETS. 2020. P. 1-5.
Харари Ф. Теория графов М.: Мир, 1973.
Богомолов А. М., Салий В. Н. Алгебраические основы теории дискретных систем. М.: Наука, 1997.
Теребин Б. А., Абросимов М. Б. Об оптимальности реализации графов с заданными мерами связности // Прикладная дискретная математика. Приложение. 2020. № 13. С. 103-105.
Теребин Б. А., Абросимов М. Б. О минимальном числе рёбер в реализациях графов с заданными мерами связности // Компьютерные науки и информационные технологии: Материалы Междунар. науч. конф. 2021. С. 159-161.
 One family of optimal graphs with prescribed connectivities | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/28

One family of optimal graphs with prescribed connectivities | Applied Discrete Mathematics. Supplement. 2022. № 15. DOI: 10.17223/2226308X/15/28

Download full-text version
Counter downloads: 783