About the past, but at different times: Computer analysis of texts in textbooks on the history of the USSR/Russia for six generations of students | Vestnik Tomskogo gosudarstvennogo universiteta. Filologiya – Tomsk State University Journal of Philology. 2024. № 89. DOI: 10.17223/19986645/89/4

About the past, but at different times: Computer analysis of texts in textbooks on the history of the USSR/Russia for six generations of students

In this article, we focus on the analysis of the texts of three history textbooks for university students published at different times: in 1946, 1983, 2001, 2006 and 2010. As a material, we use texts in each of the textbooks describing seven historical topics since the beginnings of the Principality of Kiev till the Reforms of Peter I. In our research, we tried to move away from the tradition banalized in discursive research to analyze history textbooks as a kind of ideologically labeled discourse. Instead, we consider the analyzed texts as a form of manifestation of a certain generational narrative. The authors of the textbooks, being not only institutional narrators, but also representatives of their generation, color the historiographical canvas, which remains, in principle, unchanged, with a certain emotional tone, and, when telling about the same events, shift the focus of thematic attention based on the spirit of their time. To solve this problem, we use computational linguistics methods: sentiment analysis, clusterization and topic modeling. Their use in combination with interpretive analysis allowed us to draw a number of conclusions: (1) there are historical subjects that are told, in general, within the same dominant tonality, while for others there is an ambivalence of evaluation; (2) the ranges even within the same tonality may vary greatly from textbook to textbook; for example, this is characteristic of texts about Ivan the Terrible; (3) each textbook is characterized by its own “tonal range”: 1946 is the most restrained, while 1983, 2001 and 2006 are the most altitudinal; (4) even in the textbooks of the same author team, published 9 years apart, the tonality of the texts of the same sections is not identical: from 1997 to 2006 it becomes, on the whole, noticeably more positive; (5) within the generational narrative, historical stories are revealed through the prism of a certain dominant idea - it is different for each time: for the post-war narrative it is the idea of protecting the state and paying attention to its geopolitical neighbours; for the post-perestroika period of the formation of the “young” Russian democracy (2001) -the idea of paysan community and veche as the forms of original democracy “of the people”; for the time of the formation of the modern Russian vertical of power (2010) it is the idea of centralization of power and its stability. This article uses the results of the Text as Big Data: Methods and Models for Working with Large Text Data project carried out within the framework of the Fundamental Research Program of the National Research University Higher School of Economics in 2024. The authors declare no conflicts of interests.

Download file
Counter downloads: 5

Keywords

textbook texts, ideological discourse, sentiment analysis, topic modeling, Russian history

Authors

NameOrganizationE-mail
Kolmogorova Anastasia V.National Research University Higher School of Economicsakolmogorova@hse.ru
Kolmogorova Polina A.National Research University Higher School of Economicspakolmogorova@edu.hse.ru
Kulikova Elizaveta R.National Research University Higher School of Economicsekulikova@edu.hse.ru
Всего: 3

References

Ginburg C. Clues, Myths and the Historical Method. Baltimore, 1989. 231 р.
Megill A. Historical Knowledge, Historical Error. Chicago, 2007. 288 p.
Moretti F. Distant Reading. London: Verso, 2013. 254 р.
Козачина А.В. Реализация мифопоэтической стратегии легитимации институционализированных ценностей в японском педагогическом дискурсе // Вестник Томского государственного педагогического университета. 2020. Вып. 6 (212). С. 20-26.
Citron S. Le mythe national: L'histoire de France en question. Paris: Ed. ouvrieres: Etudes et doc.intern., 1987.
Dubois J., Legris P. (dir.). Disciplines scolaires et cultures politiques. Des modeles nationaux en mutation depuis 1945. Rennes: Presses universitaires de Rennes, 2018.
Dubois J. Garibaldi dans les manuels scolaires d'histoire en Italie: les usages pedagogiques et politiques. In:Jeremie Dubois et Patricia Legris (dir.), Disciplines scolaires et cultures politiques. Des modeles nationaux en mutation depuis 1945. Rennes: Presses universitaires de Rennes, 2018. Р. 81-91.
Konkka O. Le dictateur ou le chef de la nation victorieuse ? L'evolution de la presantation de Joseph Staline dans les manuels scolaires d'histoire de la Russie postsovietique In:Jeremie Dubois et Patricia Legris (dir.), Disciplines scolaires et cultures politiques. Des modeles nationaux en mutation depuis 1945. Rennes: Presses universitaires de Rennes, 2018. Р. 105120.
Конкка О. Язык постсоветских школьных учебников истории: два уровня легитимации политического в дискурсе о прошлом // Дискурс легитимации: язык и политика в эпоху глобальных вызовов / под общ. ред. А.В. Колмогоровой. Красноярск: Сиб. федер. ун-т, 2019. С. 50-69.
Wodak R., Meyer M. Methods of Critical Discourse Analysis. London: SAGE Publications Ltd, 2001. 200 p.
Stibbe A. Ecolinguistics: Language, ecology, and the stories we live by. New York: Routledge, 2015.
Ерунов Б.Л. Мнение и умонастроение в историческом аспекте // История и психология / под ред. Б.Ф. Поршнева, Л.И. Анциферовой. М., 1971. С. 110-126.
Бухарин Н.И. Рецензия на учебник, подготовленный Московским государственным педагогическим институтом им. А.С. Бубнова, 23 октября 1936 г. // РГАСПИ. Ф. 17. Оп. 120. Д. 361. Л. 9-13.
Огановская И.С. Школьный учебник отечественной истории: Учебные издания как исторический источник // Документ. Архив. История. Современность. 2011. № 12. С. 264-282.
Повалява Н.Е. История Отечества до начала ХХ в. в современных учебниках: автореф. канд. ист. наук. М., 2004. 24 с.
Greimas A.J., Courtes J. Adjuvant // Semiotique. Dictionnaire raisonne de la theorie du langage. Paris: Hachette, 1979. P. 10-11.
Шаховский В.И. Обоснование лингвистической теории эмоций // Вопросы психолингвистики. 2019. № 1 (39). С. 22-37.
Beigi Gh., Hu X., Maciejewski R., Liu H. An overview of sentiment analysis in social media and its applications in disaster relief. In: Pedrycz W, Chen SM, editors. Sentiment analysis and ontology engineering. Berlin: Springer Cham, 2016. Р. 313-340. 10.1007/978-3-319-30319-2 13.
Negi S., Buitelaar P. Suggestion Mining From Opinionated Text // Sentiment Analysis in Social Networks / eds by F.A. Pozzi, E. Fersini, E. Messina, B. Liu, M. Kaufmann. Elsevier, 2017. P. 129-139.
Koltsova O., Alexeeva S., Pashakhin S., Koltsov S. PolSentiLex: Sentiment Detection in Sociopolitical Discussions on Russian Social Media, in: Artificial Intelligence and Natural Language. AINL 2020 Communications in Computer and Information Science Book 1292: Communications in Computer and Information Science. Cham: Springer, 2020. P. 1-16.
Tiwari P., Yadav P., Agnihotri S., Mishra B., Nhu N., Gochhayat S., Singh J., PrasadM. Sentiment Analysis for Airlines Services Based on Twitter Dataset // Social Network Analytics.Computational Research Methods and Techniques. 2019. Р. 149-162.
Yasen M., Tedmori S. Movies Reviews Sentiment Analysis and Classification // Proceedings of the IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). Amman, Jordan, 2019. Р. 860-865. doi: 10.n09/JEEIT.2019.8717422.
Sherstinova T., Moskvina A., Kirina M., Karysheva A., Kolpashchikova E., Maksimenko P., Seinova A., Rodionov R. Sentiment Analysis of Literary Texts vs. Reader's Emotional Responses // Proceedings of the 33rd Conference of Open Innovations Association (FRUCT) / IEEE. 2023. P. 243-249.
Sell J., Farreras I. LIWC-ing at a Century of Introductory College Textbooks: Have the Sentiments Changed? // Procedia Computer Science. 2017. № 118. Р. 108-112.
Solovyev V.D., Solnyshkina M.I., Gafiyatova E.V., McNamara D.S., Ivanov V. Sentiment in Academic Texts // Proceedings of the 24th Conference of Open Innovations Association (FRUCT). Р. 408-414.
Smetanin S., Komarov M. Deep transfer learning baselines for sentiment analysis in Russian // Information Processing & Management. 2021. Vol. 58, Is. 3. Р. 102484.
Николаев И.С., Митренина О.В., Ландо Т.М. Прикладная и компьютерная лингвистика. М.: ЛЕНАНД, 2016. 320 с.
Кулагин Д.И. Открытый тональный словарь русского языка КартаСловСент // Компьютерная лингвистика и интеллектуальные технологии: По материалам ежегодной Международной конференции "Диалог". Вып. 20. М., 2021. С. 1106-1119.
Koltsova O.Yu., Alexeeva S. V., Kolcov S.N. An Opinion Word Lexicon and a Training Dataset for Russian Sentiment Analysis of Social Media // Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference "Dialogue-2016". 2016. Vol. 15 (22). P. 277-287.
Loukachevitch N., Levchik A. Creating a General Russian Sentiment Lexicon // Proceedings of Language Resources and Evaluation Conference LREC-2016. 2016.
Кирина М.А. Сравнение тематических моделей на основе LDA, STM и NMF для качественного анализа русской художественной прозы малой формы // Вестник НГУ. Серия: Лингвистика и межкультурная коммуникация. 2022. Т. 20, № 2. С. 93-109.
Demsar J., Curk T., Erjavec A., Gorup C., Hocevar T., Milutinovic M., Mozina M., Polajnar M., Toplak M., Staric A., Stajdohar M., Umek L., Zagar L., Zbontar J., Zitnik M., Zupan B. Orange: Data Mining Toolbox in Python // Journal of Machine Learning Research. № 14 (Aug). Р. 2349-2353.
Sciandra A., Trevisani M., Tuzzi A. Diagnostics for topic modelling. The dubious joys of making quantitative decisions in a qualitative environment // Proceedings of the Statistics and Data Science Conference. Pavia University Press, 2023. Р. 61-66.
Bischof J.M., Airoldi E.M. Summarizing topical content with word frequency and exclusivity // International Conference on Machine Learning. 2012. № 29. Р. 201-208.
 About the past, but at different times: Computer analysis of texts in textbooks on the history of the USSR/Russia for six generations of students | Vestnik Tomskogo gosudarstvennogo universiteta. Filologiya – Tomsk State University Journal of Philology. 2024. № 89. DOI: 10.17223/19986645/89/4

About the past, but at different times: Computer analysis of texts in textbooks on the history of the USSR/Russia for six generations of students | Vestnik Tomskogo gosudarstvennogo universiteta. Filologiya – Tomsk State University Journal of Philology. 2024. № 89. DOI: 10.17223/19986645/89/4

Download full-text version
Counter downloads: 499