Sentiment analysis on risk communication about health: News VS Twitter (based on texts about the COVID-19 pandemic) | Vestnik Tomskogo gosudarstvennogo universiteta. Filologiya – Tomsk State University Journal of Philology. 2024. № 92. DOI: 10.17223/19986645/92/5

Sentiment analysis on risk communication about health: News VS Twitter (based on texts about the COVID-19 pandemic)

The article presents the results of a comparative analysis of sentiment presented in Russian-language news discourse and Twitter discourse while reflecting the dynamics of the pandemic and the accompanying event series. The analysis was performed using NLP methods. The material for the analysis was as follows: texts that in any way reflect the theme of the coronavirus and were published by RIA and TASS agencies in 2020. The volume of materials about Moscow was 3135 texts, and the volume about regions was 1404 texts. To immerse the texts about the coronavirus in the general context of the event radar of this period, the analysis included texts with "incidents", "science", and "culture" topics in the volume of 66,096 texts (31,890 texts reflect events in the regions and 34,206 in Moscow). The sentiment of Twitter texts was analyzed using 178,673 texts. The RuBERT-based blanchefort/rubert-base-cased-sen-timent model was used to analyze the sentiment of news texts, and the sisme-tanin/rubert-rusentitweet model (https://huggingface.co/sismetanin/rubert-rusentitweet) was used to analyze Twitter texts. The results of the sentiment analysis were connected with official statistics on the development of the pandemic during this period (https://yandex.doud/ru/marketplace/products/yandex/coronavirus-dashboard-and-data) and information on the chronicle of events (https://ria.ru/20210305/korona-virus-1599707836.html). The analysis showed that news about the coronavirus had a mostly neutral tone, while the tone of the general news flow was negative. No changes in the sentiment were found in Twitter texts: tweets of negative and neutral sentiment were equally distributed almost throughout the whole period under study. What unites the two discourses is the tendency to minimize the number of texts carrying positive sentiments. When analyzing news texts about the coronavirus, we identified several dates on which the negative sentiment was out of the general distribution. The increase in the negative sentiment on certain dates in June and November is connected with the peak of disease incidence in the regions - July and the beginning of the second wave of disease growth in 2020 in November and a new wave of restrictive measures. As the analysis showed, the sentiment of the news flow was influenced by the statistics on the spread of the coronavirus and the government's response to the situation by introducing regulatory measures that affected almost all aspects of social and private life in the country. We also documented days when the level of positive sentiment in news content increased in response to a decrease in disease incidence and reports of vaccine development. In general, the findings are consistent with research conducted on English-language news articles from COVID-19-affected countries around the world. The authors declare no conflicts of interests.

Download file
Counter downloads: 3

Keywords

transformers, Twitter, news, sentiment analysis, infodemic, COVID-19 pandemic

Authors

NameOrganizationE-mail
Rezanova Zoya I.Tomsk State Universityrezanovazi@mail.ru
Sypchenkova Yulia E.Tomsk State Universitykorovina.juliaa@gmail.com
Всего: 2

References

Yin H., Yang S., Li J. Detecting topic and sentiment dynamics due to COVID-19 pan demic using social media // Proceedings of the International Conference on Advanced Data Mining and Applications; International Conference on Advanced Data Mining and Applications; November 12-15, 2020. China, 2020. Р. 610-623. URL: https://arxiv.org/pdf/2007.02304.
Hung M., Lauren E., Hon E.S., Birmingham W.C., Xu J., Su S., Hon S.D., Park J., Dang P., Lipsky M.S. Social network analysis of COVID-19 sentiments: Application of artificial intelligence // J. Med Internet Res. 2020. Vol. 18, № 22 (8). Р. e22590.
Smetanin S., Komarov M. Sentiment analysis of product reviews in Russian using convolutional neural networks // 2019 IEEE 21st conference on business informatics (CBI). IEEE, 2019. Vol. 1. Р. 482-486. URL: https://github.com/sismetanin/rureviews.
Rogers A. et al. Ru Sentiment: An enriched sentiment analysis dataset for social media in Russian // Proceedings of the 27th international conference on computational linguistics. 2018. Р. 755-763.
RuReviews: An Automatically Annotated SentimentAnalysis Dataset for Product Reviews in Russian. URL: https://github.com/sismetanin/rareviews (дата обращения: 02.05.2024).
Рубцова Ю. Автоматическое построение и анализ корпуса коротких текстов (постов микроблогов) для задачи разработки и тренировки тонового классификатора // Инженерия знаний и технологии семантического веба. 2012. Т. 1. С. 109-116.
Shavrina T., Shapovalova O. To the methodology of corpus construction for machine learning: "TAIGA" syntax tree corpus and parser // CORPORA 2017: International conference. Saint-Petersbourg, 2017. Р. 78-84.
Lison P., Tiedemann J. Open Subtitles 2016: Extracting Large Parallel Corpora from Movie and TV Subtitles // Proceedings of the 10th International Conference on Language Resources and Evaluation (LREC 2016). 2016. Р. 923-929.
Kuratov Y., Arkhipov M. Adaptation of deep bidirectional multilingual transformers for Russian language // Computational Linguistics and Intellectual Technologies: proceedings of the International Conference "Dialogue 2019". Moscow, 2019.
Smetanin S. RuSentiTweet: a sentiment analysis dataset of general domain tweets in Russian // PeerJ Computer Science. 2022. Vol. 8. Р. e1039. URL: https://peeij.com/articles/cs-1039.
Vaswani A. et al. Attention is all you need // Advances in neural information processing systems. 2017. Vol. 30. Р. 1-11.
Кулагин Д.И. Открытый тональный словарь русского языка КартаСловСент. М., 2021. URL: https://github.com/dkulagin/kartaslov/tree/master/dataset/kartaslovsent; https://www.dialog-21.ru/media/5570/kulagindi026.pdf.
LINIS Crowd. URL: https://linis.hse.ru/news/176051028.html.
Loukachevitch N., Rusnachenko N. Extracting sentiment attitudes from analytical texts // Computational Linguistics and Intellectual Technologies: proceedings of the International Conference "Dialogue 2018". Moscow, 2018.
Лукашевич Н.В., Левчик А.В. Создание лексикона оценочных слов русского языка РуСентиЛекс // Открытые семантические технологии проектирования интеллектуальных систем = Open Semantic Technologies for Intelligent Systems (OSTIS-2016): материалы VI междунар. науч.-техн. конф. Минск, 2016. С. 377-382.
Резанова З.И., Коровина Ю.Е. Риск-коммуникация в сфере здоровья: тематическая фокусировка событийного потока COVID-19 в новостном дискурсе // Вестник Томского государственного университета. Философия. Социология. Политология. 2023. № 76. С. 217-228.
Резанова З.И., Степаненко А.А. Дискурсивные варианты тематического моделирования пандемии COVID-19 (новостной медиадискурс vs социальные сети) // Вестник Томского государственного университета. Филология. 2023. № 86. С. 84-101.
Резанова З.И., Степаненко А.А. Фреймирование кризисной ситуации в институ циональных и персональных медиа (на материале текстов о COVID-19) // Вестник Томского государственного университета. 2023. № 495. С. 5-13.
Серегина Т.Н., Сухова С.К. Информационные риски в условиях пандемии // Манускрипт. 2021. № 5. С. 940-944.
Баринов Д.Н. Медиавирус страха: особенности репрезентации российскими СМИ пандемии коронавирусной инфекции (COVID-19) в период первой волны (январь-июнь 2020 года) // Социодинамика. 2021. № 2. C. 73-86.
Krawczyk K., Chelkowski T., Laydon D.J, Mishra S., Xifara D., Gibert B., Flaxman S., Mellan T., Schwammle V., Rottger R., Hadsund J.T., Bhatt S. Quantifying Online News Media Coverage of the COVID-19 Pandemic: Text Mining Study and Resource // J. Med.Internet Res. 2021. № 23 (6): e28253.
Ashima Yadav A. Language-independent Network to Analyze the Impact of COVID-19 on the World via Sentiment Analysis // ACM Transactions on Internet Technology. 2021. Vol. 22, Is. 1. Article no: 28. Р. 1-30.
Panfilova A.S., Ushakov D.V. Sentiment Analysis of Russian, Italian, German and French Internet News Content during the Spread of the Coronavirus Pandemic // Psychology-Journal of the Higher School of Economics. 2О22. № 19 (3). Р. 562-586. URL: https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/pt/covidwho-2244035.
Aslam F., Mumtaz Awan T., Syed J.H., Kashif A., Parveen M.Sentiments and emotions evoked by news headlines of coronavirus disease (COVID-19) outbreak // Humanities and social sciences communications. 2020. № 7. Р. 23.
Yakunin K., Mukhamediev R.I., Zaitseva E., Levashenko V., Yelis M., Symagulov A., Kuchin Ya., Muhamedijeva E., Aubakirov M., Gopejenko V. Mass Media as a Mirror of the COVID-19 Pandemic // Computation. 2021. № 9 (12). Р. 140.
Chakraborty A., Bose S. Around the world in 60 days: an exploratory study of impact of COVID-19 on online global news sentiment // Journal of computational social science. 2020. Vol. 3, № 2. Р. 367-400.
Chen Lyu J., Le H.E., Luli C. COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis // J. Med Internet Res. 2021 Jun 29. № 23 (6): e24435.
Alamood А., Zaidan B.B., Zaidan A.A., Albahri O.S., Mohammed K.I., Malik R.Q., Almahdi E.M., Chyad M.A., Tareq Z., Albahri A.S., Hameed H., Alaa M. Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review // Expert Systems With Applications. 2021. № 167. Р. 114-155.
Инфодемия: существующие подходы к анализу паник, фобий, слухов, фейков во время эпидемий и предложения по борьбе с ними. URL: https://www.ranepa.ru/documents/monitoring/120-infodemiya.pdf (дата обращения: 02.05.2024).
 Sentiment analysis on risk communication about health: News VS Twitter (based on texts about the COVID-19 pandemic) | Vestnik Tomskogo gosudarstvennogo universiteta. Filologiya – Tomsk State University Journal of Philology. 2024. № 92. DOI: 10.17223/19986645/92/5

Sentiment analysis on risk communication about health: News VS Twitter (based on texts about the COVID-19 pandemic) | Vestnik Tomskogo gosudarstvennogo universiteta. Filologiya – Tomsk State University Journal of Philology. 2024. № 92. DOI: 10.17223/19986645/92/5

Download full-text version
Counter downloads: 540