Трехструйное рождение адронов в распаде хиггс-бозона Н -> qq-g | Известия вузов. Физика. 2021. № 6. DOI: 10.17223/00213411/64/6/10

Трехструйное рождение адронов в распаде хиггс-бозона Н -> qq-g

В рамках Стандартной модели рассмотрено трехструйное рождение адронов в распаде хиггс-бозона Н -> qq - g . Получено аналитическое выражение для ширины распада, исследована зависимость ширины распада от энергий кварка и антикварка. Интегрируя по энергиям кварка и антикварка, определена полная ширина распада хиггс-бозона Н -> qq - g .

Three jet production of hadrons in decay of higgs-boson Н -> qq-g.pdf Введение Как известно, Стандартная модель (CM) хорошо описывает физику элементарных частиц. Важной частью этой модели является механизм спонтанного нарушения симметрии Браута - Энглера - Хиггса [1, 2], в котором вводится скалярное поле с ненулевым вакуумным значением и за счет взаимодействия с этим полем возникают массы элементарных частиц, а из-за квантовых возбуждений поля Хиггса появляется новая скалярная частица - бозон Хиггса. Открытие хиггс-бозона с характеристиками, соответствующими СМ, осуществлено коллаборациями ATLAS и CMS в 2012 г. [3, 4] (см. также обзоры [5-7]). Хиггс-бозон не имеет электрического заряда, является нестабильной частицей, может распадаться по различным каналам. На Большом адронном коллайдере (LHC) его открыли, изучая распады на два фотона и на две пары электрон - позитрон (или мюон - антимюон) , , . Эти распады записываются как , где реальный, а виртуальный бозон, один из лептонов . Коллаборации ATLAS и CMS также сообщают, что наблюдаются распады -бозона по схеме , где заряженный бозон, а электронное (мюонное) нейтрино. Хиггс-бозон в большинстве случаев должен распадаться на пару . Рождение пары в протон-протонных (протон-антипротонных) столкновениях - явление очень частое и без всякого хиггс-бозона, и выделить сигнал от хиггс-бозона из этого фона трудно. Поэтому исследуется процесс, в котором в протон-протонных столкновениях хиггс-бозон рождается вместе с -бозоном, а затем распадается на пару , а - на пару , где это или . Распад приводит к появлению высокоэнергетического лептона и недостающей энергии. Эта особенность позволяет сильно подавить фон. Используется и аналогичный процесс с последующим распадом и или . К сожалению, в экспериментах Большого адронного коллайдера выделить эти процессы из фона пока не удалось. В СМ скалярные поля дают массы всем элементарным частицам, взаимодействие каждой из этих частиц с бозоном Хиггса жестко фиксировано. Чем больше массы частицы, тем сильнее взаимодействие и чем сильнее взаимодействие, тем более вероятен распад хиггс-бозона на пару частиц данного сорта. Распады на пары тяжелых частиц , , запрещены законом сохранения энергии. Следующим по массе является кварк с массой ГэВ, поэтому бозон скорее всего распадается по каналу . Интересны распады -бозона на пару -лептонов ( ГэВ) и очарованную кварковую пару ( ГэВ). В этой работе исследуется распад хиггс-бозона на пару кварк и антикварк с излучением глюона . (1) Этот распад происходит в два этапа. Сперва хиггс-бозон распадается на пару кварк - анти- кварк, а затем антикварк или кварк испускает глюон. В двухчастичном распаде в системе покоя хиггс-бозона кварк и антикварк разлетаются с равными и противоположными импульсами и рождаются две струи адронов, импульсы которых коллинеарны начальным направлениям кварка и антикварка. В случае распада хиггс-бозона по каналу в конечном состоянии рождаются три струи адронов. Дополнительную струю дает глюон. Введем кинематические переменные для описания таких событий. 1. Трехструйные события Рис. 1. Процесс в системе покоя хиггс-бозона Векторы импульсов частиц кварка, антикварка и глюона, рожденных при распаде хиггс-бозоном , находящимся в состоянии покоя, приведены на рис. 1. Мы вводим энергии, продольные и поперечные импульсы кварков и глюона, приведенные к энергии хиггс-бозона : . (2) Все эти величины изменяются в пределах от нуля до еди- ницы. Предположим, что кварковая струя обладает наибольшей энергией (рис. 1). Кварк, антикварк и глюон компланарны в плоскости . Согласно рис. 1, доли 4-импульсов частиц таковы: для кварка , для антикварка , (3) для глюона . Закон сохранения энергии налагает условие . (4) Законы сохранения продольных и поперечных импульсов уже учтены в (3). Из них следуют выражения: (5) Из (4) и (5) найдем, что . (6) Угол между направлениями импульсов кварка и антикварка на рис. 1 определяется соотношением . (7) Вычислим теперь ширину распада , соответствующую диаграмме рис. 1. В этой диаграмме антикварк испускает более мягкий глюон, так что . (8) В результате испускания глюона кварк и антикварк уже не рождаются в противоположных направлениях. Антикварк рождается с долей поперечного импульса . В этом случае наблюдаемой величиной является ширина распада . Вычислим эту величину с помощью вероятностного метода Альтарелли - Паризи [8]. На основе данных рис. 2 получаем Рис. 2. Вычисление ширины распада вероятностным методом , (9) где - полная ширина распада хиггс-бозона на пару кварк - антикварк , а - вероятность того, что антикварк испустит глюон с долей импульса и с поперечным импульсом . Полная ширина распада выражается формулой (см. [9, 10]) , (10) где скорость кварка; - константа Ферми слабых взаимодействий. Согласно квантовой хромодинамике, вероятность выражается формулой [8] , (11) где константа сильного взаимодействия, а . (12) При сингулярность связана с испусканием мягкого безмассового глюона (инфракрасная расходимость). Подставляя (11) в (9), находим . (13) На основе формулы (13) для ширины распада получаем . Дополнительный множитель 2 введен для учета вклада диаграммы, где глюон излучается кварком. Как видно, подынтегральное выражение расходится при . Поэтому особый интерес представляет кинематическая ситуация, когда энергия антикварка достигает своего максимального значения. Из условий (8) следует, что наибольшее допустимое значение энергии антикварка равно энергии кварка: . (14) Чтобы приблизится к этому значению, испускаемый глюон должен быть очень мягким. Поскольку величина поперечного импульса фиксирована, это требование выполняется при . (15) Данной кинематической конфигурации соответствует рис. 3. Таким образом, из закона сохранения энергии имеем (16) С учетом этого равенства (13) можно представить как , (17) Рис. 3. Кинематическая конфигурация при где мы приняли . Отсюда с учетом ведущих логарифмических членов получаем . (18) 2. Вывод ширины распада по правилам Фейнмана Отметим, что ширину распада процесса можно также найти, пользуясь диаграммной техникой Фейнмана. Этот распад описывается диаграммами Фейнмана, приведенными на рис. 4 (в скобках записаны 4-импульсы частиц). Рис. 4. Феймановские диаграммы распада Амплитуда, соответствующая диаграммам рис. 4, может быть записана так (массами кварков можно пренебречь): , (19) где , (20) - константа взаимодействия -бозона с кварковой парой; - константа кварк-глюонного взаимодействия; матрицы Гелл-Манна; 4-вектор поляризации глюона; и цветовые индексы кварковых и глюонных полей. Для квадрата амплитуды (19) получилось выражение . (21) Здесь учтено соотношение . Перейдем к переменным и , воспользовавшись соотношениями (22) Подставляя (22) в (21) и исключая по закону сохранения энергии, получаем . (23) Ширина распада связана с квадратом амплитуды соотноше- нием = , (24) где инвариантный фазовый объем: . (25) Для ширины распада в порядке получено выражение . (26) На рис. 5 представлена зависимость ширины распада (26) от энергии антикварка при различных значениях энергии кварка 0.2, 0.5 и 0.8, константе взаимодействия . Видно, что с ростом энергии кварка и антикварка ширина распада увеличивается. Рис. 5. Зависимость ширины распада от энергии антикварка при фиксированной энергии кварка Чтобы найти полную ширину распада , необходимо проинтегрировать выражение (26) по и от 0 до 1. Однако подынтегральное выражение в (26) расходится, когда или стремится к единице. Это связано, как было отмечено выше, с инфракрасной расходимостью ( ). Другой тип расходимости связан с массовой сингулярностью, обусловленной выбором . Для устранения расходимости интегрирования по и проводим в пределах от 0 до . В результате получаем . (27) На рис. 6 приводится зависимость полной ширины распада от максимальной энергии кварка (антикварка) . С увеличением доли энергии, уносимой кварком (антикварком) ширина распада увеличивается. Рис. 6. Зависимость полной ширины распада от максимальной энергии кварка (антикварка) Заключение В рамках СМ мы обсуждали распад хиггс-бозона на пару кварк - антикварк с излучением глюона . Получены аналитические выражения для амплитуды и ширины распада. Изучена зависимость ширины распада от энергии антикварка при заданной энергии кварка. Интегрируя по энергиям кварка и антикварка, найдена полная ширина распада .

Ключевые слова

Стандартная модель, хиггс-бозон, кварк-антикварковая пара, трехструнное рождение, константа взаимодействия, ширина распада

Авторы

ФИООрганизацияДополнительноE-mail
Годжаев Меджид Шарафаддин оглыБакинский государственный университетк.ф.-м.н., доцентm_qocayev@mail.ru
Всего: 1

Ссылки

Englert F. and Brout R. // Phys. Rev. Lett. - 1964. - V. 13. - No. 9. - P. 321.
Higgs P.W. // Phys. Rev. Lett. - 1964. - V. 13. - No. 16. - P. 508.
ATLAS Collaboration. // Phys. Lett. - 2012. - V. B716. - P. 1-29.
CMS Collaboration // Phys. Lett. -2012. - V. B716. - P. 30-61.
Rubakov V.A. // Phys. Usp. - 2012. - V. 55. - No. 10. - P. 949. DOI: 10.3367/UFNe.0182.201210a.1017.
Lanev A.B. // Phys. Usp. - 2014. - V. 57. - No. 9. - P. 923. DOI: 10.3367/UFNe.0184.201409i.0996.
Kazakov D.I. // Phys. Usp. - 2014. - V. 57. - No. 9. - P. 930. DOI: 10.3367/UFNe.0184.201409j.1004.
Halzen F. and Martin A.D. Quarks and Leptons. - USA, 1984. - 384 p.
Djouadi A. The Anatomy of Electro-Weak Symmetry Breaking. Tome I: The Higgs boson in the Standard Model. arXiv: hep-ph/0503172v2, 2005; DOI: 10.1016/j.physrep.2007.10.004.
Abdullayev S.K., Gojayev M.Sh., and Saddigh F.A. // Moscow University Phys. Bull. - 2017. - V. 72. - No. 4. - P. 329.
 Трехструйное рождение адронов в распаде хиггс-бозона <i>Н</i> -> <i>qq</i><sup>-</sup><i>g</i> | Известия вузов. Физика. 2021. № 6. DOI: 10.17223/00213411/64/6/10

Трехструйное рождение адронов в распаде хиггс-бозона Н -> qq-g | Известия вузов. Физика. 2021. № 6. DOI: 10.17223/00213411/64/6/10