Модифицированный генетический алгоритм повышенной сходимости для аппроксимации поверхности потенциальной энергии молекул
Представлен модифицированный генетический алгоритм повышенной сходимости (ГАПС) для решения нерегуляризованной, глубоко параметризованной и невыпуклой задачи. Основная особенность ГАПС - частичная оптимизация генома особей с помощью алгоритма Левенберга - Марквардта. Введена модельная функция (МФ), характеристичная для задачи аппроксимации поверхности потенциальной энергии молекул. С помощью МФ проведен сравнительный анализ ГАПС, генетического алгоритма, алгоритмов Левенберга - Марквардта и Adam.
Ключевые слова
поверхность потенциальной энергии,
машинное обучение,
генетический алгоритм,
алгоритмы оптимизации,
итерационные алгоритмыАвторы
Третьяков Аким Константинович | Национальный исследовательский Томский государственный университет | мл. науч. сотр. лаборатории лазерного молекулярного имиджинга и машинного обучения | dr.akim1998@yandex.ru |
Кистенёв Юрий Владимирович | Национальный исследовательский Томский государственный университет | д.ф.-м.н., профессор, зав. лабораторией лазерного молекулярного имиджинга и машинного обучения, профессор кафедры общей и экспериментальной физики | yuk@iao.ru |
Всего: 2
Ссылки
Madsen K., Nielsen H. B., Tingleff O. Methods for Non-Linear Least Squares Problems. - 2004.
Levenberg K. // Quart. Appl. Math. - 1944. - V. 2. - No. 2. - P. 164-168.
Rodríguez-Fernández R. et al. // Comput. Phys.Commun. - 2017. - V. 217. - P. 89-98. - DOI: 10.1016/j.cpc.2017.02.008.
Marques J.M.C. et al. // J. Phys. B: Atomic, Molecular and Optical Physics. - 2008. - V. 41. - No. 8. - P. 085103. - DOI: 10.1088/0953-4075/41/8/085103.
Almeida M.M. et al. // J. Phys. B: Atomic, Molecular and Optical Physics. - 2011. - V. 44. - No. 22. - P. 225102. - DOI: 10.1088/0953-4075/44/22/225102.
Le Grand S.M., Merz K.M. // J. Global Optimizat. - 1993. - V. 3. - P. 49-66. - DOI: 10.1007/BF01100239.
Roberts C., Johnston R.L., Wilson N.T. // Theor. Chem. Accounts. - 2000. - V. 104. - P. 123-130. - DOI: 10.1007/s002140000117.
Silva G.M. et al. // Int. J. Quant. Chem. - 2008. - V. 108. - No. 13. - P. 2318-2325. - DOI: 10.1002/qua.21599.
Wang J., Kollman P.A. // J.Comput. Chem. - 2001. - V. 22. - No. 12. - P. 1219-1228. - DOI: 10.1002/jcc.1079.
Behler J., Parrinello M. // Phys. Rev. Lett. - 2007. - V. 98. - No. 14. - P. 146401. - DOI: 10.1103/PhysRevLett.98.146401.
Kamath A. et al. // J. Chem. Phys. - 2018. - V. 148. - No. 24. - DOI: 10.1063/1.5003074.
Metcalf D.P. et al. // J. Chem. Phys. - 2020. - V. 152. - No. 7. - DOI: 10.1063/1.5142636.
Mitchell M. An Introduction to Genetic Algorithms. - MIT Press, 1998.
Prudente F.V., Neto J.J.S. // Chem. Phys. Lett. - 1998. - V. 287. - No. 5-6. - P. 585-589. - DOI: 10.1016/S0009-2614(98)00207-3.
Prudente F.V., Acioli P.H., Neto J.J.S. // J. Chem. Phys. - 1998. - V. 109. - No. 20. - P. 8801-8808. - DOI: 10.1063/1.477550.
Kingma D.P., Ba J. // arXiv preprint arXiv:1412.6980. - 2014. - DOI: 10.48550/arXiv.1412.6980.
Python [Electronic resource] // Python - Electronic data. - [no p., no d.]. - URL: https://www.python.org/(дата обращения: 15.07.2024).
Solgi R.M. Project Description [Электронный ресурс] // geneticalgorithm 1.0.2. - URL: https://pypi.org/project/ geneticalgorithm/(Дата обращения: 15.07.2024).