Особенности структурно-фазовой трансформации порошка Ti в условиях высокоэнергетической механической активации | Известия вузов. Физика. 2025. № 9. DOI: 10.17223/00213411/68/9/12

Особенности структурно-фазовой трансформации порошка Ti в условиях высокоэнергетической механической активации

Методом рентгеноструктурного анализа выявлены особенности фазовой трансформации порошка титана в условиях высокоэнергетической механической активации. Установлено, что на фоне наноструктурирования в условиях высокоэнергетической механической активации исходного α-Ti происходит формирование наноразмерных фаз β-Ti и ω-Ti. В результате полнопрофильного анализа выявлено, что после обработки продолжительностью 1 мин формируется до 13% β-Ti и около 2% ω-Ti. Обработка продолжительностью 5 мин характеризуется увеличением объемных долей β-Ti и ω-Ti до 17 и 7% соответственно. Высказано предположение о том, что возможность стабилизации наноразмерной фазы β-Ti является следствием увеличения относительного вклада поверхностной энергии в свободную энергию.

Ключевые слова

титановый порошок, высокоэнергетическая механическая активация, рентгеноструктурный анализ, фазовая трансформация

Авторы

ФИООрганизацияДополнительноE-mail
Осипов Денис АндреевичИнститут физики прочности и материаловедения СО РАНк.ф.-м.н., науч. сотр.osipov_da@ispms.ru
Дитенберг Иван АлександровичИнститут физики прочности и материаловедения СО РАНд.ф.-м.н., доцент, зав. лабораторией, ведущ. науч. сотр.ditenbergia@ispms.tsc.ru
Гриняев Константин ВадимовичИнститут физики прочности и материаловедения СО РАНмл. науч. сотр.kvgrinyaev@ispms.tsc.ru
Всего: 3

Ссылки

Dewaele A., Stutzmann V., Bouchet J., et al. // Phys. Rev. B. - 2015. - V. 91. - P. 134108. - DOI: 10.1103/physrevb.91.134108.
Ballor J., Li T., Prima F., et al. // Int. Mater. Rev. - 2023. - V. 68. - P. 26-45. - DOI: 10.1080/09506608.2022.2047423.
Ahuja R., Dubrovinsky L., Dubrovinskaia N., et al. // Phys. Rev. B. - 2004. - V. 69. - P. 184102. - DOI: 10.1103/physrevb.69.184102.
Jafari M., Vaezzadeh M., Noroozizadeh S. // Metall. Mater. Trans. A. - 2010. - V. 41. - P. 3287-3290. - DOI: 10.1007/s11661-010-0393-1.
Adachi N., Todaka Y., Irie K., et al. // J. Mater. Sci. - 2016. - V. 51. - P. 2608-2615. - DOI: 10.1007/s10853-015-9574-z.
Gunderov D.V., Churakova A.A., Sharafutdinov A.V., et al. // IOP Conf. Ser.: Mater. Sci. Eng. - 2022. - V. 1213. - P. 012003. - DOI: 10.1088/1757-899X/1213/1/012003.
Ivanisenko Y., Kilmametov A., Rösner H., et al. // Int. J. Mater. Res. - 2008. - V. 99. - P. 36-41. - DOI: 10.3139/146.101606.
Vohra Y.K., Spencer P.T. // Phys. Rev. Lett. - 2001. - V. 86. - P. 3068-3071. - DOI: 10.1103/PhysRevLett.86.3068.
Akahama Y., Kawamura H., Le Bihan T. // Phys. Rev. Lett. - 2001. - V. 87. - P. 275503. - DOI: 10.1103/PhysRevLett.87.275503.
Дитенберг И.А., Корчагин М.А., Пинжин Ю.П. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - № 6. - С. 101-107.
Young R.A., Wiles D.B. // J. Appl. Cryst. - 1982. - V. 15. - P. 430-438. - DOI: 10.1107/S002188988201231X.
Williamson G.K., Hall W.H. // Acta Metall. - 1953. - V. 1. - P. 22-31.
Tane M., Okuda Y., Todaka Y., et al.// Acta Mater. - 2013. - V. 61. - P. 7543-7557. - DOI: 10.1016/j.actamat.2013.08.036.
Valiev R.Z., Islamgaliev R.K., Alexandrov I.V. // Progr. Mater. Sci. - 2000. - V. 45 - P. 103-189. - DOI: 10.1016/s0079-6425(99)00007-9.
Morokhov I.D., Petinov V.I., Trusov L.I., Petrunin V.F. // Sov. Phys. Usp. - 1981. - V. 24 - P. 295-317. - DOI: 10.1070/PU1981v024n04ABEH004800.
 Особенности структурно-фазовой трансформации порошка Ti в условиях высокоэнергетической механической активации | Известия вузов. Физика. 2025. № 9. DOI: 10.17223/00213411/68/9/12

Особенности структурно-фазовой трансформации порошка Ti в условиях высокоэнергетической механической активации | Известия вузов. Физика. 2025. № 9. DOI: 10.17223/00213411/68/9/12