Hydrogen embrittlement of the low-carbon steel produced by electron beam additive manufacture | Izvestiya vuzov. Fizika. 2022. № 6. DOI: 10.17223/00213411/65/6/53

Hydrogen embrittlement of the low-carbon steel produced by electron beam additive manufacture

The effect of a cathodic hydrogen charging in different solutions on the mechanical properties and fracture mechanisms of Fe-(1.8-2.1)Mn-(0.7-1.0)Si-(0.05-0.11)C low-carbon steel obtained by electron-beam additive manufacture and industrial casting was studied. Hydrogen charging causes an increase in the yield strength and a decrease in elongation both for steel obtained by additive method (ferritic steel) and for normalized steel produced by industrial method (ferritic-pearlitic steel). An increase in the duration of hydrogen charging from 5 to 20 hours at current density jH = 250 mA/cm2 (aqueous solution NaCl+NH4SCN) is accompanied by the increase of the hydrogen embrittlement index for additively produced specimens (KH5h = 13%, KH20h = 19%), but does not affect the KH-value for normalized industrial steel (KH5h = 28%, KH20h = 30%). Even at a lower current density and duration of charging, the use of an aqueous solution of sulfuric acid (H2SO4+CH4N2S) as an electrolytic solution causes greater hydrogen-induced effects than charging in an aqueous solution of sodium chloride. Regardless of the manufacturing method and charging regime, hydrogen charging contributes the formation of fish-eye defects on the fracture surfaces of steels. It was established that under the similar hydrogen charging regimes, the deteriorative effect of hydrogen is less pronounced in steel produced by the additive manufacture.

Download file
Counter downloads: 22

Keywords

additive technologies, low-carbon steel, hydrogen embrittlement, fracture

Authors

NameOrganizationE-mail
Panchenko M.Yu.Institute of Strength Physics and Materials Science of SB RASpanchenko.marina4@gmail.com
Melnikov E.V.Institute of Strength Physics and Materials Science of SB RASmelnickow.jenya@yandex.ru
Astafurov S.V.Institute of Strength Physics and Materials Science of SB RASsvastafurov@gmail.com
Reunova K.A.Institute of Strength Physics and Materials Science of SB RASreunova.ksenya@mail.ru
Kolubaev E.A.Institute of Strength Physics and Materials Science of SB RASeak@ispms.tsc.ru
Astafurova E.G.Institute of Strength Physics and Materials Science of SB RASelena.g.astafurova@ispms.ru
Всего: 6

References

Lynch S.P. // Corros. Rev. -2012. - V. 30. - P. 125-123.
Barrera O., Bombac D., Chen Y., et al. //j. Mater. Sci. - 2018. - V. 53. - P. 6251-6290.
Djukic M.B., Bakic G.M., Sijacki Zeravcic V., et al. // Corrosion. - 2016. - V. 72(7). - P. 943-961.
Birnbaum H.K. // MRS Bull. - 2003. - V. 28(7). - P. 479-485.
Djukic M.B., Zeravcic V.S., Bakic G.M., et al. // Eng. Fail. Anal. - 2015. - V. 58. - P. 485-498.
Tau L., Chan S.L.I. // Mater. Lett. - 1996. - V. 29. - P. 143-147.
Ichitani K., Kanno M. // Adv. Mater. - 2003. - V. 4. - P. 545-551.
Song J., Curtin A.W. // Nat. Mater. - 2013. - V. 12(2). - P. 145-151.
Dadfarnia M., Sofronis P., Neeraj T. // Int. J. Hydrogen Energy. - 2011. - V. 36(16). - P. 10141-10148.
Ngo D., Kashani A., Imbalzano G., et al. // Compos. Part B. Eng. - 2018. - V. 143. - P.172-196.
Ron L., Levy G.K., Dolev O., et al. // Metals. - 2019. - V. 9. - P. 888.
Chen X., Li J., Cheng X., et al. // Mater. Sci. Eng. A. - 2018. - V. 715. - P. 307-314.
Astafurova E.G., Panchenko M.Yu., Moskvina V.A., et al. //j. Mater. Sci. - 2020. - V. 55. - P. 9211-9224.
Tarasov S.Yu., Filippov A.V., Shamarin N.N., et al. //j. Alloys Compd. - 2019. - V. 803. - P. 364-370.
Астафурова Е.Г., Реунова К.А., Астафуров С.В. и др. // Изв. вузов. Физика. - 2021. - Т. 64. - № 7. - C. 10-17.
Li N., Huang S., Zhang G., et al. // Mater. Sci. Tech. - 2019. - V. 35. - P. 242-269.
Bajaj P., Hariharan A., Kini A., et al. // Mater. Sci. Eng. - 2020. - V. 772. - P. 138633.
Astafurova E.G., Melnikov E.V., Astafurov S.V., et al. // Lett. Mater. - 2021. - V. 11(4). - P. 427-432.
Ahsan Md.R.U., Tanvir A.N.M., Seo G.-J., et al. // Additive Manuf. - 2020. - V. 32. - P. 101036.
Sun L., Jiang F., Huang R., et al. // Mater. Sci. Eng. A. - 2020. - V. 787. - P. 139514.
Li Y., Wu S., Li H., Cheng F. // Mater. Lett. - 2020. - V. 283. - P. 128780.
Naidu S.V.N., Singh T. // Wear. - 1993. - V. 166. - P. 141-145.
Астафурова Е.Г., Астафуров С.В., Реунова К.А. и др. // Физич. мезомех. - 2021. - Т. 24. - № 3. - C. 5-16.
Astafurov S., Astafurova E., Reunova K., et al. // Mater. Sci. Eng. - 2021. - V. 826. - P. 141951.
Martin M.L., Fenske J.A., Liu G., et al. // Acta Mater. - 2011. - V. 59(4). - P. 1601-1606.
Lynch S.P. // Acta Metall. - 1988. - V. 36. - P. 2639-2661.
Martin M.L., Dadfarnia M., Nagao A., et al. //. Acta Mater. - 2019. - V. 165. - P. 734-750.
Rozenak P., Robertson I.M., Birnbaum H.K. // Acta Metal. Mater. - 1990. - V. 38(11). - P. 2031-2041.
Abe N., Suzuki H., Takai K., et al. // Mater. Sci. Technol. Conf. Exhib. - 2011. - V. 2. - P. 1277-1284.
 Hydrogen embrittlement of the low-carbon steel produced by electron beam additive manufacture | Izvestiya vuzov. Fizika. 2022. № 6. DOI: 10.17223/00213411/65/6/53

Hydrogen embrittlement of the low-carbon steel produced by electron beam additive manufacture | Izvestiya vuzov. Fizika. 2022. № 6. DOI: 10.17223/00213411/65/6/53