Pairwise coincidence count rate for laser radiation with collective effects taken into account | Izvestiya vuzov. Fizika. 2025. № 9. DOI: 10.17223/00213411/68/9/3

Pairwise coincidence count rate for laser radiation with collective effects taken into account

This paper is devoted to the study of correlation properties of fluctuations in the number of photons in laser radiation for the case when the half-width of the resonator transmission line is much smaller than the transverse relaxation width of a two-level atom and much larger than the longitudinal width. The dependence of the correlator on time is found. It is shown that there is a region of parameters where it oscillates and the frequency of these oscillations is calculated.

Download file
Counter downloads: 1

Keywords

laser, photon, radiation, spectrum, atomic spectrum, relaxation, resonator

Authors

NameOrganizationE-mail
Titov Evgeny A.Institute of Laser Physics of the Siberian Branсh of the Russian Academy of Sciencestitov@laser.nsc.ru
Zhmud Vadim A.Institute of Laser Physics of the Siberian Branсh of the Russian Academy of Sciencesoao_nips@bk.ru
Всего: 2

References

Yang Z., Meng J., Albrecht A.R., et al. // Opt. Express. - 2019. - V. 27. - P. 1392-1400.
Yang Z., Meng J., Albrecht A.R., et al. // Proceedings of the SPIE Photonic Heat Engines: Science and Applications. San Francisco, CA, USA, 2-7 February 2019. - 2019. - P. 23.
Volpi A., Kocka J., Albrecht A.R., et al. // Proceedings of the SPIE Photonic Heat Engines: Science and Applications III, Online, 6-12 March 2021. - 2021. - V. 11702. - P. 117020U.
Mafi A. // J. Opt. Soc. Am. B. - 2020. - No. 37. - P. 1821-1828.
Peysokhan M., Mobini E., Allahverdi A., et al. // Photonics Res. - 2020. - No. 8. - P. 202-210.
Vigneron P.B., Knalla J., Boilardb T., et al. // Proceedings of the SPIE OPTO, Online, 5 April 2021. - 2021. - V. 11702. - P. 117020A.
Knall J.M., Digonnet M.J.F. // J. Light. Technol. - 2021. - V. 39. - P. 2497-2504.
Liu Y., Teitelboim A., Fernandez-Bravo A., et al. // ACS Nano. - 2020. - No. 14. - P. 1508-1519.
Xiaa X., Pantb A., Felstedb R.G., et al. // Proceedings of the SPIE Photonic Heat Engines: Science and Applications III, Online, 6-12 March 2021. - 2021. - V. 11702. - P. 117020R.
Nakayama Y., Harada Y., Kita T. // Appl. Phys. Lett. - 2020. - No. 117. - P. 041104.
Nakayama Y., Harada Y., Kita T. // Proceedings of the SPIE Photonic Heat Engines: Science and Applications III, Online. - 2021. - V. 11702. - P. 117020K.
Sheik-Bahae M., Yang Z. // IEEE J. Quantum Electron. - 2020. - V. 56. - P. 1000109.
Young L., Nienhuis E.T., Koulentianos D., et al. // Appl. Sci. - 2021. - V. 11. - P. 701.
Nanda K.D., Vidal M.L., Faber R., et al. // Phys. Chem. Chem. Phys. - 2020. - No. 22. - P. 2629-2641.
Ho P.J., Daurer B.J., Hantke M.F., et al. // Nat.Commun. - 2020. - No. 11. - P. 167.
Serkez S., Decking W., Froehlich L., et al. // Appl. Sci. - 2020. - No. 10. - P. 728.
Reiche S., Knopp G., Pedrini B., et al. A perfect X-ray beam splitter and its applications to time-domain interferometry and quantum optics exploiting free-electron lasers // arXiv 2020, arXiv:physics.acc-ph/2010.00230.
Engel R., Miedema P., Turenne D., et al. // Appl. Sci. - 2020. - No. 10. - P. 6947.
Schlotter W.F., Beye M., Zohar S., et al. Balanced detection in femtosecond X-ray absorption spectroscopy to reach the ultimate sensitivity limit // arXiv 2020, arXiv:physics.ins-det/2006.13968.
He Y., Liu Y., Liu C., et al. // Remote Sens. - 2022. - No. 14. - P. 2565.
Titov E.A. // Opt. Spectrosc. - 2015. - V. 119. - No. 3. - P. 520-525.
Kurbatov A.A., Titov E.A. // Opt. Spectrosc. - 2016. - V. 120. - No. 5. - P. 818-822.
Kazantsev A.P., Surdutovich G.I. // Sov. Phys. JETP. - 1969. - V. 29. - No. 6. - P. 1075-1083.
Kazantsev A.P. // Sov. Phys. JETP. - 1972. - V. 34. - No. 5. - P. 953-958.
Bagayev S. N., Kurbatov A.A., Titov E.A. // Quantum Electron. - 1997. - V. 27. - No. 10. - P. 901-905.
Fleming M., Mooradian A. // Appl. Phys. Lett. - 1981. - V. 38. - P. 511-513.
Henry C. // IEEE J. Quantum Electron. - 1982. - V. 18. - No. 2. - P. 259-264.
Titov E.A. // Laser Phys. - 2002. - V. 12. - No. 5. - P. 883-887.
McCumber D.E. // Phys. Rev. - 1966. - V. 141. - P. 306-322.
Тихонов В.И. Нелинейные преобразования случайных процессов. - М.: Радио и связь, 1986. - 296 с.
 Pairwise coincidence count rate for laser radiation with collective effects taken into account | Izvestiya vuzov. Fizika. 2025. № 9. DOI: 10.17223/00213411/68/9/3

Pairwise coincidence count rate for laser radiation with collective effects taken into account | Izvestiya vuzov. Fizika. 2025. № 9. DOI: 10.17223/00213411/68/9/3

Download full-text version
Counter downloads: 85