On the size of soft X-ray radiation source based on X-pinch
The appearance of X-pinch based compact radiographs has significantly expanded the possibilities of using pulsed radiography to diagnostics of fast processes. The key point was the question of the spatial resolution that such a radiograph is capable of providing. The method for determining the size of a soft X-ray source (MRI) based on obtaining diffraction images of opaque metallic wires and comparing them with a diffraction pattern calculated for an extended source in a given spectral range are presented in the paper. The X-pinch source dimensions were measured taking into account the sensitometric characteristics of the film and the characteristics of the scanner. It has been shown using this technique that in the current rising rates range of 0.7-1.35 kA/ns the diameter of the X-pinch radiation source in the spectral range h n >3 keV varies slightly.
Keywords
импульсная рентгенография,
мягкое рентгеновское излучение,
Х-пинч,
импульсный генератор тока,
низкоиндуктивный конденсатор,
плотная высокотемпературная плазма,
pulse radiography,
soft X-ray radiation,
X-pinch,
pulse power generator,
low-inductance capacitor,
dense high-temperature plasmaAuthors
Artyomov A.P. | Institute of High Current Electronics SB RAS | aap545@gmail.com |
Chaikovsky S.A. | Institute of High Current Electronics SB RAS; Institute of Electrophysics UD RAS | stas-chaikovsky@yandex.ru |
Oreshkin V.I. | Institute of High Current Electronics SB RAS | oreshkin@ovpe.hcei.tsc.ru |
Fedunin A.V. | Institute of High Current Electronics SB RAS | fed@ovpe2.hcei.tsc.ru |
Rousskikh A.G. | Institute of High Current Electronics SB RAS | russ@ovpe2.hcei.tsc.ru |
Ratakhin N.A. | Institute of High Current Electronics SB RAS | contact@hcei.tsc.ru |
Всего: 6
References
Zakharov S.M., Ivanenkov G.V., Kolomenskii A.A., et al. // Sov. Tech. Phys. Lett. - 1982. - V. 8. - P. 1060-1063.
Hammer D.A., Kalantar D.H., Mittal K.C., and Qi. N. // Appl. Phys. Lett. - 1990. - V. 57. - P. 2083-2085.
Pikuz S.A., Shelkovenko T.A., Mingaleev A.R., et al. // Proc. SPIE. - 2005. - V. 5974. - P. 59740 (1-9).
Artyomov A.P., Fedunin A.V., Chaikovsky S.A., and Ratakhin N.A. // J. Phys.: Conf. Series. - 2015. - V. 653. - Р. 012144 (1-5).
Rousskikh A.G., Fedyunin A.V., Artyomov A.P., et al. // Curr. Appl. Phys. - 2019. - V. 19. - P. 704-708.
Паркевич Е.В., Тиликин И.Н., Агафонов А.В. и др. // Письма в ЖЭТФ. - 2016. - Т. 103. - С. 402-407.
Artyomov A.P., Zhigalin A.S., Lavrinovich I.V., et al. // Instr. Exp. Tech. - 2014. - V. 57. - No. 4. - P. 461-474.
Baksht R.B., Rousskikh A.G., Zhigalin A.S., et al. // Phys. Plasmas. - 2015 - V. 22. - P. 103521 (1-6).
Beg F.N., Stephens R.B., Xu H.W., et al. // Appl. Phys. Lett. - 2006. - V. 89. - P. 101502 (1-3).
Aranchuk L.E., Chuvatin A.S., and Larour J. // Rev. Sci. Instrum. - 2004. - V. 75. - P. 69-74.
Чайковский С.А., Артёмов А.П., Жарова Н.В. и др. // Изв. вузов. Физика. - 2017. - Т. 60. - № 8. - С. 131-135.
Ратахин Н.А. Федущак В.Ф., Эрфорт А.А. и др. // Изв. вузов. Физика. - 2007. - Т. 50. - № 2. - С. 87-92.
Пикуз С.А., Шелковенко Т., Хаммер Д.А. // Физика плазмы. - 2015. - Т. 41. - № 4. - С. 319- 373.
Бутиков Е.И. Оптика. - СПб.: Лань, 2012. - 608 с.
Матвеев А.Н. Оптика. - М.: Высш. школа, 1985. - 351 с.
Борн М. Основы оптики. - М.: Наука, 1973. - 720 с.
Hecht E. Optics. - San Francisco: Addison-Wesley, 2002. - 698 p.
Cowley J.M. Diffraction Physics. - Amsterdam: North-Holland, 1975. - 481 p.
Kohn V., Snigireva I., and Snigirev A. // Phys. Rev. Lett. - 2000. - V. 85. - P. 2745-2748.
Henke B.L., Gullikson E.M., and Davis J.C. // Atomic Data and Nuclear Data Tab. - 1993. - V. 54. - P. 181-342.
Блохин М.А. Физика рентгеновских лучей. - М.: ГИТТЛ, 1953. - 455 с.
Choi P., Dumitrescu C., Wyndham E., et al. // Rev. Sci. Instrum. - 2002. - V. 73. - No. 6. - P. 2276-2281.
Song B.M., Pikuz S.A., Shelkovenko T.A., and Hammer D.A. // Appl. Opt. - 2005. - V. 44. - P. 2349-2358.