Numerical modelling of acoustical processes by particles interaction | Izvestiya vuzov. Fizika. 2019. № 12. DOI: 10.17223/00213411/62/12/107

Numerical modelling of acoustical processes by particles interaction

We propose the method to simulate acoustical processes in solid media using interacting particles placed in body-centered cubic lattice. Each particle interact with its neighboring particles according to attraction force defined by specific function for each material type. Particle dynamics is described by Newtons laws. The simulation model shows correctly such acoustical effects as wave propagation, reflection and resonant vibrations. The simulation algorithm is embodied in the program by means of parallel programming of OpenCL technology, which allows to speed up modeling. By time reversal approach we demonstrated ability to visualize pulse sound sources.

Download file
Counter downloads: 85

Keywords

динамика частиц, кристаллическая решетка, акустика, Open CL, particle dynamics, crystal lattice, acoustics, Open CL

Authors

NameOrganizationE-mail
Suchanov D.Y.National Research Tomsk State Universitysdy@mail.tsu.ru
Kuzovova A.E.National Research Tomsk State Universityang_kuz93@mail.ru
Всего: 2

References

Kai Gao, Shubin Fu, and Eric T. Chung // J. Computation. Phys. - 2018. - V. 360. - P. 120-136.
Cooper J.D., Valavanis A., Ikoni Z., et al. // J. Comput. Phys. - 2013. - V. 253. - P. 239-246.
Kim M., Park S.W., and Jung H.K. // J. Comput. Phys. - 2018. - V. 375. - P. 917-923.
Sousa E.M. and Shumlak U. // J. Comput. Phys. - 2016. - V. 326. - P. 56-75.
Sheldon Wang X., Zhang L.T., and Liu W.K. // J. Comput. Phys. - 2009. - V. 228. - P. 2535- 2551.
Jarrett J. and Heyliger P.R. // J. Comput. Part. Mech. - 2015. - V. 2. - P. 209-220.
Averkin S.N. and Gatsonis N.A. // J. Comput. Phys. - 2018. - V. 363. - P. 178-199.
Clark R.E., Welch D.R., Zimmerman W.R., et al. // J. Comput. Phys. - 2011. - V. 230. - P. 695- 705.
Yilmaz O.Z. and Doherty S.M. // J. Soc. Exploration Geophys. - 2001. - V. 1. - P. 2027-2030.
Chao Q.L. and Feng J. // J. Hydrodynamics. - 2017. - V. 29. - P. 542-551.
Monagham J.J. // Rep. Prog. Phys. - 2005. - V. 68. - P. 1703-1759.
Zhang Y.O., Zhang T., Ouyang H., and Li T.Y. // J. Math. Problems Eng. - 2015. - V. 2015. - P. 1-7.
Tonnesen D. // Graphics Interface. - 1991. - P. 255-262.
Полетаев Г.М., Зоря И.В., Старостенков М.Д. и д р. // Изв. вузов. Физика. - 2018. - Т. 61. - № 7. - С. 47-51.
Полетаев Г.М., Зоря И.В., Старостенков М.Д. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 10. - С. 83-87.
Zuckerman N. and Lukes J.R. // Phys. Rev. - 2008. - V. 77. - P. 1-20.
 Numerical modelling of acoustical processes by particles interaction | Izvestiya vuzov. Fizika. 2019. № 12. DOI: 10.17223/00213411/62/12/107

Numerical modelling of acoustical processes by particles interaction | Izvestiya vuzov. Fizika. 2019. № 12. DOI: 10.17223/00213411/62/12/107