Pulsed cathodoand roentgenoluminescence of pure and doped zinc selenide crystals
Amplitude and spectral-kinetic characteristics of glow of pure (without injected admixtures) ZnSe crystals and Ga-, Te- and Sm-doped ZnSe crystals excited by electron beam and pulsed X-rayss have been investigated. One edge band (λ ~ 490 nm, τ ~ 20 ns) has been registered in the pulsed cathodoluminescence spectra of pure ZnSe at temperature of 300 K. Cathodoluminescence spectra of the doped ZnSe crystals have two bands - edge band (λ ~ 477 nm, τ ~ 20 ns) and band with maximum at λ ~ 600 nm (τ ~ 5 µs), intensity ratio of which depends on energy density of an electron beam and geometry of spectrum registration. One band with maximum at λ ~ 600 nm, which intensity depends on type of the doping admixture, has been registered in the roentgenoluminescence spectra of the doped crystals. Possibility to use pure and doped zinc selenide crystals as detectors of amplitude-time characteristics of electron beams and X-rayss with energy up to hundreds keV has been discussed.
Keywords
кристаллы селенида цинка,
спектры люминесценции,
zinc selenide crystals,
luminescence spectraAuthors
Oleshko V.I. | National Research Tomsk Polytechnic University | oleshko@tpu.ru |
Tarasenko V.F. | Institute of High Current Electronics SB RAS | VFT@loi.hcei.tsc.ru |
Erofeev M.V. | Institute of High Current Electronics SB RAS | mve@loi.hcei.tsc.ru |
Vil’chinskaya S.S. | National Research Tomsk Polytechnic University | svetvil@tpu.ru |
Всего: 4
References
Pereira M.C.C., Filho T.M., Berretta J.R., and Mesquita C.H. // Mat. Sci. Appl. - 2018. - V. 9. - No. 2. - P. 268.
Липатов Е.И., Бураченко А.Г., Авдеев С.М. и др. // Изв. вузов. Физика. - 2018. - Т. 61. - № 3. - С. 62-75.
Pourshahab B., Abdi M.R., Sadighzadeh A., and Rasouli C. // Phys. Plasmas. - 2016. - V. 23. - P. 072501.
Zhou R.J., Hu L.Q., Zhang Y., et al. // Nuclear Fusion. - 2017. - V. 57. - No. 11. - P. 114002.
Rubel M., Brezinsek S., Coenen J.W., et al. // Matter and Radiation at Extremes. - 2017. - V. 2. - No. 3. - P. 87.
Jakubowski L., Sadowski M.J., and Zebrowski J. // Rev. Sci. Instrum. - 2010. - V. 81. - No. 1. - P. 013504.
Bagnato F., Romano A., Buratti P., et al. // Plasma Phys. Control. Fusion. - 2018. - V. 60. - No. 11. - P. 115010.
Sorokin D.A., Burachenko A.G., Beloplotov D.V., et al. // J. Appl. Phys. - 2017. - V. 122. - No. 15. - P. 154902.
Бураченко А.Г., Тарасенко В.Ф., Белоплотов Д.В., Бакшт Е.Х. // Изв. вузов. Физика. - 2017. - Т. 60. - № 9. - С. 66-69.
Тарасенко В.Ф., Бакшт Е.Х., Белоплотов Д.В. и др. // Изв. вузов. Физика. - 2019. - Т. 62. - № 7. - С. 79 - 88.
Zhao T., Hu M., Zhong R., et al. // Appl. Phys. Lett. - 2017. - V. 110. - No. 23. - P. 231102.
Тарасенко В.Ф., Ломаев М.И., Сорокин Д.А., Белоплотов Д.В. // Изв. вузов. Физика. - 2018. - Т. 61. - № 7. - С. 160-161.
Berezhnoy K.V., Nasibov A.S., Reutova A.G., et al. // Opt. Mem. Neural Networks. - 2009. - V. 18. - No. 4. - P. 285.
Oleshko V.I., Baksht E.Kh., Burachenko A.G., and Tarasenko V.F. // Tech. Phys. - 2017. - V. 62. - No. 2. - P. 299.
Морозова Н.К., Каретников И.А., Гаврищук Е.М. // Неорганические материалы. - 1999. - Т. 35. - № 8. - С. 917.