Features of the formation and use of electron beams with wide energy spectrum
The paper is dedicated to analysis of the submicrosecond electron beam energy spectrum effect on the depth distribution of the dose during irradiation of the air at atmospheric pressure. Based on real experimental characteristics of electron beams, a method for the quick formation of an optimized dose distribution in the air volume in a series of electron beam pulses with a wide energy spectrum is simulated. The parameters of the beam current pulses series are calculated using the developed heuristic software algorithm that calculates the integral absorbed dose with prioritization of particles possessing higher kinetic energy.
Keywords
electron beam,
pulsed electron accelerator,
depth distribution of absorbed dose,
electron beam kinetic energy spectrumAuthors
| Serebrennikov Maksim A. | Tomsk Polytechnic University | mas48@tpu.ru |
| Ding Yuchun | Tomsk Polytechnic University | yuychun1@tpu.ru |
| Egorov Ivan S. | Tomsk Polytechnic University | egoris@tpu.ru |
Всего: 3
References
Chu L. et al. // J. Hazard. Mater. - 2021. - V. 415. - P. 125724. - DOI: 10.17223/00213411/62/7/5.
Korenev S. // Vacuum. - 2001. - V. 62. - No. 2-3. - P. 233-236. - DOI: 10.1016/S0042-207X(00)00421-8.
Mostovshchikov A.V., Ilyin A.P., Egorov I.S. // Radiat. Phys. Chem. - 2018. - V. 153. - P. 156-158. - DOI: 10.1016/j.radphyschem.2018.09.024.
Cleland M.// CERN Accel. School: Small Accel. - 2006. - P. 383-416. - DOI: 10.5170/CERN-2006-012.383.
Chmielewski A.G. // Radiat. Phys. Chem. - 2004. - V. 71. - P. 17-21. - DOI: 10.1016/j.radphyschem.2004.05.040.
Baskar R., Lee K.A., Yeo R., Yeoh K.W. // Int. J. Med. Sci. - 2012. - V. 9. - No. 3. - P. 193-199. - DOI: 10.7150/ijms.3635.
Vaz P. // Radiat. Phys. Chem. - 2014. - V. 104. - P. 23-30. - DOI: 10.1016/j.radphyschem.2014.02.007.
Gryczka U., Migda W., Bulka S. // Radiat. Phys. Chem. - 2018. - V. 143. - P. 59-62. - DOI: 10.1016/j.radphyschem.2017.09.020.
Calado T., Venâncio A., Abrunhosa L. // Compr. Rev. Food Sci. Food Saf. - 2014. - V. 13. - No. 5. - P. 1049-1061. - DOI: 10.1111/1541-4337.12095.
Егоров И.С., Исемберлинова A.A., Серебренников M.A. и др. // Изв. вузов. Физика. - 2020. - Т. 63. - № 7. - С. 36-40. - DOI: 10.17223/00213411/63/7/36.
Егоров И.С., Полосков А.В., Серебренников M.A. // Изв. вузов. Физика. - 2022. - Т. 65. - № 11. - С. 43-47. - DOI: 10.17223/00213411/65/11/43.
Poloskov A., Serebrennikov M., Isemberlinova A., Egorov I. // J. Phys.: Conf. Ser. - 2019. - V. 1393. - P. 012115. - DOI: 10.1088/1742-6596/1393/1/012115.
Sokovnin S.Y. et al. // Radiat. Phys. Chem. - 2019. - V. 165. - P. 108398. - DOI: 10.1016/j.radphyschem.2019.108398.
Sokovnin S.Y., Vazirov R.A., Balezin M.E., Krivonogova A.S. // RAD Conf. Proc. - 2017. - P. 11-14. - DOI: 10.21175/RadProc.2017.03.
Battistoni G., Boehlen T., et al. // Ann. Nucl. Energy. - 2015. - V. 82. - P. 10-18. - DOI: 10.1016/j.anucene.2014.11.007.
Berger M.J., Coursey J.S., Zucker M.A., Chang J. // NIST Stand. Ref. Database. - 2017. - V. 124. - DOI: 10.18434/T4NC7P.
Cleland M.R., Galloway R.A., Berejka A.J. // Nucl. Instrum. Methods Phys. Res. Sect. B. Beam Interact. with Mater. Atoms. - 2007. - V. 261. - P. 94-97. - DOI: 10.1016/j.nimb.2007.04.053.
Tabata T., Andreo P., Shinoda K. // Radiat. Phys. Chem. - 1998. - V. 53. - P. 205-215. - DOI: 10.1016/S0969-806X(98)00102-9.
Serebrennikov M., Poloskov A., Egorov I. // 7th Int. Congr. Energy Fluxes Radiat. Eff., IEEE. - 2020. - P. 128-130. - DOI: 10.1109/EFRE47760.2020.9241894.
Серебренников М.А., Адамов Е.В., Полосков А.В., Егоров И.С. // Материалы XXVI Международной научно-технической конференции студентов, аспирантов и молодых ученых «Научная сессия ТУСУР-2021». - 2021. - C. 220-223.
Коваль Н.Н., Девятков В.Н., Воробьев М.С. // Изв. вузов. Физика. - 2020. - Т. 63. - № 10. - С. 7-16. - DOI: 10.17223/00213411/63/10/7.
Vorobyov M.S., Baksht E.Kh., Koval N.N., et al. // Proc. 20th Int. Symp. on High-Current Electronics (ISHCE 2018). - 2018. - P. 209-213.