CAUSES OF CAPILLARY HYPOPERFUSION IN MICROVASCULAR FLAPS FOLLOWING THEIR REPERFUSION (EXPERIMENTAL STUDY) | Issues of reconstructive and plastic surgery. 2016. № 4 (59).

CAUSES OF CAPILLARY HYPOPERFUSION IN MICROVASCULAR FLAPS FOLLOWING THEIR REPERFUSION (EXPERIMENTAL STUDY)

Evidence of epigastric microvascular flaps hypoperfusion after their replantation (transplantation) is presented in the article. The aim of the study: experimental investigation of vascular bed state in microvascular epigastric flaps ina condition of disturbed cardiosynchronized vasomotor sympathetic reflex. № 4 (59) декабрь’2016 Вопросы реконструктивной и пластической хирургии Экспериментальная хирургия 27 Material and methods. The object of the study were pubertal white rats of both sexes weighing 250-300 g (n = 60). Anesthesia was performed by intramuscular administration of “Zoletil-50” solution in a dose of 5 mg per 1 kg of body weight. The animals were divided into three groups: Group I rats (n = 20) underwent performing an access to a. et v. epigastrica superficialis with preservation of periadventitial tissue, then precisionally, via 30G insulin needle, a. epigastrica superficialis with Gerota mass was perfused. After perfusion of arterial bed, the skin channel in boundaries of epigastric flap, lifting of the inferior epigastric flap was performed based upon F. Finseth method in the standard marking (2 . 3 cm), followed by the intersection of the surface epigastric neurovascular bundle. Group II rats (n = 20) underwent lifting of free inferior epigastric flap with the application of based upon P.G. van der Sloot (2002) method with precise isolation of the limb skin graft (superficial epigastric vessels) to femoral vessels with subsequent microvascular anastomoses in an “end-to-end” at the level a. et v. femoralis. After microvascular reperfusion of epigastric flap and quality check of anastomosts performed, antegrade perfusion of the flap using Gerota mass was performed via a. epigastrica superficialists. The III group rats (n = 20) underwent lifting of free inferior epigastric flap with the application of arteriovenous anastomoses at the level of femoral vessels proximal to the point of origin of superficial epigastric neurovascular bundle. Using this model, retrograde reperfusion of epigastric free flap tissues was performed immediately after the arterialization of its venous bed (the RF patent № 2486605). After retrograde blood flow beginning in the flap, its retrograde perfusion using Gerota mass was performed via a. epigastrica superficialis. Status of vascular bed in microvascular epigastric flaps in conditions of impaired cardiosynchronized vasomotor sympathetic reflex was tested using macropreparations and histological sections with the assessment of the perfusion of venous, arterial and microcirculatory bed in epigastric microvascular flaps. Conclusions. Cardiosynchronized vasomotor sympathetic reflex provides full opening of arterioles and perfusion of the skin capillary bed within epigastric flap boundaries. Transplantation (replantation) of microvascular flap is followed by loss of vascular tone neurogenic control and by interrupting of pulse wave passage on the flap artery which leads to disturbed opening mechanism of arterioles and capillary hypoperfusion. Hypertension in venous bed of microvascular flaps may be followed by retrograde movement of blood to the level of arterioles.

Download file
Counter downloads: 200

Keywords

микрососудистый эпигастральный лоскут, капиллярная гипоперфузия, кардиосинхронизированный сосудодвигательный симпатический рефлекс, нейрогенный контроль, microvascular epigastric flap, capillary hypoperfusion, cardiosynchronized vasomotor sympathetic reflex, neurogenic control

Authors

NameOrganizationE-mail
Baytinger V.F.baitinger@mail.tomsknet.ru
Selyaninov K.V.
Kurochkina O.S.
Dzyuman A.N.
Всего: 4

References

Европейская конвенция по защите позвоночных животных, используемых для экспериментальных и других научных целей // Вопросы реконструктивной и пластической хирургии. - 2008. - № 1. - С. 23-40.
Жданов Д.А. Общая анатомия и физиология лимфатической системы. - Л.: Медицина, 1952. - 252 с.
Пат. 2486605 Российская Федерация, МПК G09B23/28, A61B17/00. Способ моделирования артериализованного эпигастрального венозного лоскута с артериализацией глубоких вен нижней конечности / В.Ф. Байтингер, О.С. Курочкина. - № 2012103304; заявл. 31.01.2012; опубл. 27.06.2013, Бюл. 18. - 11 с.
Петров Е.С., Кошев В.И., Волобуев А.Н. Взгляды и суждения, анализ и выводы по некоторым вопросам фундаментальной и прикладной медицины. - Самара: Изд-во СНЦ РАН, 2012. - 187 с.
Сеченов И.М. О щелочах крови и лимфы. 1893.
Физиология человека: учебник / под ред. В.М. Покровского, Г.Ф. Коротько. - М.: Медицина, 2003 -656 с.
Finseth F., Cutting C. An experimental neurovascular island skin flap for the study of the delay phenomenon // Plast. Reconstr. Surg. - 1978. - V. 61, № 3. - P. 412-420.
Flammer A.J., Luscher T.F. Human endothelial dysfunction: EDRFs // Pflugers Arch. - 2010. - 459. - P. 1005- 1013.
Hallock G.G. Critical threshold for tissure viability as determined by Laser Doppler Flowmetry // Annals of Plastic Surgery. - 1992. - V. 28, № 6. - P. 554-558.
Mangel A., Fahim M., van Breemen C. Control of vascular contractility by the cardiac pacemarker // Science. - 1982. - V. 215. - P. 1627-1629.
Mangel A. , Fahim M., van Breemen C. Rhytmic contractile activity of the in vivo rabbit aorta // Nature. - 1981. - V. 289. - P. 692-694.
Menger M.D., Pelikan S., Steiner D. et al. Microvascular ischemia-reperfusion injury in striated muscle: significance of “reflow paradox”// Amer. J. Physiol. - 1992. - V. 263, № 6 (Pt. 2). - P. 1901-1906.
Menger M.D., Ruecker M., Vollmar B. Capillary dysfunction in striated muscle ischemia/reperfusion: on the mechanisms of capillary “no-reflow” // Shock. - 1997. - V. 8, № 1. - P. 2-7.
Sloot P.G. van der, Seikaly H., Harris J.R. Effects of a Noncompressive Hematoma on Free Flap Viability // J. Otolaryngol. - 2002. - Vol. 31, № 3. - P. 144-146.
Spalteholz W. Biugefasse der Haut. - Berlin, 1927. - Bd. I. - S. 379-434.
Tsai A.G., Cabrales P., Winslow R.M. et al. Microvascular oxygen distribution in awake hamster window chamber model during hyperoxia // Amer. J. Physiol. Heart Circ. Physiol. - 2003. - V.285. - H 1537 - H 1545.
Volobuev A.N., Koshev V.I., Petrov E.S. Biophysical Principles of Hemodynamics. - New York: Science Publ., 2010. - 215 p.
 CAUSES OF CAPILLARY HYPOPERFUSION IN MICROVASCULAR FLAPS FOLLOWING THEIR REPERFUSION (EXPERIMENTAL STUDY) | Issues of reconstructive and plastic surgery. 2016. № 4 (59).

CAUSES OF CAPILLARY HYPOPERFUSION IN MICROVASCULAR FLAPS FOLLOWING THEIR REPERFUSION (EXPERIMENTAL STUDY) | Issues of reconstructive and plastic surgery. 2016. № 4 (59).