PECULIARITIES OF OXYGEN HOMEOSTASIS IN THE PROCESS OF REPARATIVE REGENERATION IN DIABETES PATIENTS (LITERATURE REVIEW)
The paper systematizes the data on the process of regulation of oxygen homeostasis in the region of wound defect. Hypoxia-inducible factor (HIF) protein is the main regulator of cellular response to hypoxia. In the case of diabetes, the HIF production is suppressed, but the artificial increase of the HIF concentration and activity stimulated angiogenesis, thus improving the repair of diabetic ulcers and survivability of a skin flap in plastic surgery. Literature data on possible ways to increase the HIF-1. concentration in tissues are presented. This increase may serve as a new way to stimulation of wound repair in the diabetic medium.
Keywords
сахарный диабет,
гипоксия,
цитокины,
заживление ран,
расщепленный кожный лоскут,
diabetes,
hypoxia,
cytokines,
wound repair,
split-thickness skin graftAuthors
Beschastnov V.V. | | vvb748@mail.ru |
Riabkov M.G. | | |
Bagriantsev M.V. | | |
Spiridonov A.A. | | |
Tikhonova O.A. | | |
Dezortsev I.L. | | |
Sokolov M.A. | | |
Kudykin M.N. | | |
Всего: 8
References
Boulton A.J., Vileikyte L., Ragnarson-Tennvall G., Apelqvist J. The global burden of diabetic foot disease // Lancet. - 2005. - Vol. 366, № 9498. - P. 1719-1724.
Галстян Г.Р., Дедов И.И. Организация помощи больным с синдромом диабетической стопы в Российской Федерации // Сахарный диабет. - 2009. - Т. 1. - С. 4-7.
Moulik P.K., Mtonga R., Gill G.V. Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology // Diabetes Care. - 2003. - Vol. 26, № 2. - P. 491-494.
Wilbek T.E., Jansen R.B., Jorgensen B., Svendsen O.L. The Diabetic Foot in a Multidisciplinary Team Setting. Number of Amputations below Ankle Level and Mortality // Exp. Clin. Endocrinol. Diabetes. - 2016. - Vol. 124, № 9. - P. 535-540.
Митиш В.А., Пасхалова Ю.С., Соков С.Л., Ермилин И.В., Гаряева В.В., Доронина Л.П., Ситкин И.И. Опыт органосохраняющего лечения синдрома диабетической стопы нейроишемической формы в гнойнонекротической стадии // Вестник РУДН, серия Медицина. - 2010. - № 3. - С. 157-162.
Hong W.X., Hu M.S., Esquivel M., Liang G.Y., Rennert R.C., McArdle A., Paik K.J., Duscher D., Gurtner G.C., Lorenz H.P. et al. The Role of Hypoxia-Inducible Factor in Wound Healing // Adv. Wound Care. - 2014. - Vol. 3, № 5. - P. 390-399.
Лукьянова Л.Д., Кирова Ю.И., Сукоян Г.В. Сигнальные механизмы адаптации к гипоксии и их роль в системной регуляции // Биологические мембраны. - 2012. - № 4. - С. 238-252.
Ruthenborg R.J., Ban J.-J., Wazir A., Takeda N., Kim J. Regulation of Wound Healing and Fibrosis by Hypoxia and Hypoxia-Inducible Factor-1 // Mol. Cells. - 2014. - Vol. 37, № 119. - P. 637-643.
Bosanquet D.C., Harding K.G. Wound duration and healing rates: cause or effect? // Wound Repair Regen. - 2014. - Vol. 22. - № 2. - P. 143-150.
Garwood C.S., Steinberg J.S. What's new in wound treatment: a critical appraisal // Diabetes Metab. Res. Rev. - 2016. - Vol. 32. - № 1. - P. 268-274.
Murdoch C., Muthana M., Lewis C.E. Hypoxia regulates macrophage functions in inflammation // J. Immunol. - 2005. - Vol. 175, № 10. - P. 6257-6263.
Lokmic Z., Darby I.A., Thompson E.W., Mitchell G.M. Time course analysis of hypoxia, granulation tissue and blood vessel growth, and remodeling in healing rat cutaneous incisional primary intention wounds // Wound Repair Regen. - 2006. - Vol. 14, № 3. - P. 277-288. № 3 (62) сентябрь’2017 Вопросы реконструктивной и пластической хирургии В помощь практическому врачу 63
Li J., Chen J., Kirsner R. Pathophysiology of acute wound healing // Clin Dermatol. - 2007. - Vol. 25, № 1. - P. 9-18.
Garcia-Martin R. Adipocyte-Specific Hypoxia-Inducible Factor Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation // Mol. Cell. Biol. - 2015. - Vol. 36, № 3. - P. 376-393.
Pichu S., Sathiyamoorthy J., Krishnamoorthy E., Umapathy D., Viswanathan V. Impact of the hypoxia inducible factor-1. (HIF-1.) pro582ser polymorphism and its gene expression on diabetic foot ulcers // Diabetes Res. Clin. Pract. - 2015. - Vol. 109, № 3. - P. 533-540.
Heyman S.N., Leibowitz D., Mor-Yosef Levi I., Liberman A., Eisenkraft A., Alcalai R., Khamaisi M., Rosenberger C. Adaptive response to hypoxia and remote ischaemia pre-conditioning: a new hypoxia-inducible factors era in clinical medicine // Acta Physiol. (Oxf). - 2016. - Vol. 216, № 4. - P. 395-406.
Catrina S.B., Zheng X. Disturbed hypoxic responses as a pathogenic mechanism of diabetic foot ulcers // Diabetes Metab. Res. Rev. - 2016. - Vol. 32, № 1. - P. 179-185.
Hoffman E.C., Reyes H., Chu F.F., Sander F., Conley L.H., Brooks B.A., Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor // Science. - 1991. - Vol. 252, № 5008. - P. 954-958.
Labrecque M.P., Prefontaine G.G., Beischlag T.V. The aryl hydrocarbon receptor nuclear translocator (ARNT) family of proteins: transcriptional modifiers with multi-functional protein interfaces // Curr. Mol. Med. - 2013. - Vol. 13, № 7. - P. 1047-1065.
Maxwell P.H., Wiesener M.S., Chang G.W., Clifford S.C., Vaux E.C., Cockman M.E., Wykoff C.C., Pugh C.W., Maher E.R., Ratcliffe P.J. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygendependent proteolysis // Nature. - 1999. - Vol. 399, № 6733. - P. 271-275.
Ohh M., Park C.W., Ivan M., Hoffman M.A., Kim T.Y., Huang L.E., Pavletich N., Chau V., Kaelin W.G. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein // Nat. Cell. Biol. - 2000. - Vol. 2, № 7. - P. 423-427.
Berra E., Roux D., Richard D.E., Pouyssegur J. Hypoxia-inducible factor-1 alpha (HIF-1 alpha) escapes O(2)-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm // EMBO Rep. - 2001. - Vol. 2, № 7 - P. 615-620.
Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation // Mol. Cell. Biol. - 1992. - Vol. 12, № 12. - P. 5447-5454.
Semenza G.L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1 // Biochem. J. - 2007. - Vol. 405, № 1. - P. 1-9.
Weidemann A., Johnson R.S. Biology of HIF-1 alpha // Cell. Death. Differ. - 2008. - Vol. 15. - P. 621-627.
Semenza G.L. Hypoxia-inducible factors in physiology and medicine // Cell. - 2012. - Vol. 148, № 3. - P. 399-408.
Kalucka J., Ettinger A., Franke K., Mamlouk S., Singh R.P., Farhat K., Muschter A., Olbrich S., Breier G., Katschinski D.M. Loss of epithelial hypoxia-inducible factor prolyl hydroxylase 2 accelerates skin wound healing in mice // Mol. Cell. Biol. - 2013. - Vol. 33, № 17. - P. 3426-3438.
Andrikopoulou E., Zhang X., Sebastian R., Marti G., Liu L., Milner S.M., Harmon J.W. Current Insights into the role of HIF-1 in cutaneous wound healing // Curr. Mol. Med. - 2011. - Vol. 11, № 3 - P. 218-235.
Kang X., Li J., Zou Y., Yi J., Zhang H., Cao M., Yeh E.T., Cheng J. Piasy stimulates HIF-1.lpha SUMOylation and negatively regulates HIF-1.lpha activity in response to hypoxia // Oncogene. - 2010. - Vol. 29, № 41. - P. 5568-5578.
Myllyharju J. Prolyl 4-hydroxylases, master regulators of the hypoxia response // Acta Physiol. - 2013. - Vol. 208, № 2. - P. 148-165.
Cramer T., Yamanishi Y., Clausen B.E., Forster I., Pawlinski R., Mackman N., Haase V.H., Jaenisch R., Corr M., Nizet V. HIF-1 alpha is essential for myeloid cell-mediated inflammation // Cell. - 2003. - Vol. 112, № 5. - P. 645-657.
Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia // Cell. Metabol. - 2006. - Vol. 3, № 3. - P. 177-185.
Duscher D. Fibroblast-Specific Deletion of Hypoxia Inducible Factor-1 Critically Impairs Murine Cutaneous Neovascularization and Wound Healing // Plast. Reconstr. Surg. - 2015. - Vol. 136, № 5. - P. 1004-1013.
Chen G.J., Chen Y.H., Yang X.Q., Li Z.J. Nano-microcapsule basic fibroblast growth factor combined with hypoxia-inducible factor-1 improves random skin flap survival in rats // Mol. Med. Rep. - 2016. - Vol. 13, № 2. - Р. 1661-1666.
Leung K.W., Ng H.M., Tang M.K., Wong C.C., Wong R.N., Wong A.S. Ginsenoside-Rg1 mediates a hypoxiaindependent upregulation of hypoxia-inducible factor-1. to promote angiogenesis // Angiogenesis. - 2011. - Vol. 14, № 4. - P. 515-522.
Catrina S.B., Okamoto K., Pereira T., Brismar K., Poellinger L. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function // Diabetes. - 2004. - Vol. 53, № 12. - P. 3226-3232.
Gao W., Ferguson G., Connell P., Walshe T., Murphy R., Birney Y.A., O’Brien C., Cahill P.A. High glucose concentrations alter hypoxia-induced control of vascular smooth muscle cell growth via a HIF-1.lpha-dependent pathway // J. Mol. Cell. Cardiol. - 2007. - Vol. 42. - P. 609-619.
Botusan I.R., Sunkari V.G., Savu O., Catrina A.I., Grunler J., Lindberg S., Pereira T., Yla-Herttuala S., Poellinger L., Brismar K. Stabilization of HIF-1 alpha is critical to improve wound healing in diabetic mice // Proc. Natl. Acad. Sci. USA. - 2008. - Vol. 105, № 49. - P. 19426-19431.
Zhang X., Yan X., Cheng L., Dai J., Wang C., Han P., Chai Y. Wound healing improvement with PHD-2 silenced fibroblasts in diabetic mice // PLoS One. - 2013. - Vol. 8, № 12. - P. 845-848.
Yu D.H., Mace K.A., Hansen S.L., Boudreau N., Young D.M. Effects of decreased insulin-like growth factor-1 stimulation on hypoxia inducible factor 1-alpha protein synthesis and function during cutaneous repair in diabetic mice // Wound Repair Regen. - 2007. - Vol. 15, № 5. - P. 628-635.
Thangarajah H., Vial I.N., Grogan R.H., Yao D., Shi Y., Januszyk M., Galiano R.D., Chang E.I., Galvez M.G., Glotzbach J.P., Wong V.W., Brownlee M., Gurtner G.C. HIF-1.lpha dysfunction in diabetes // Cell. Cycle. - 2010. - Vol. 9, № 1. - P. 75-79.