NEW TECHNOLOGY FOR PREVENTION OF POSTMASTECTOMIC LYMPHEDEMA OF UPPER LIMB
Modern technologies for surgical treatment of breast cancer (BC) are based on the principles of radical mastectomy by J.L. Madden (1965, 1972). This operation gives good long-term results (five-year survival rate reaches95.6%), but is not infrequently co-accompanied by the development of postmastectomy upper limb lymphedema. The incidence of this complication is 35 to 70%. In the last decade, the idea of preventing upper limb postmastectomy lymphoma has become popular, based on the technology of fluorescence imaging of lymph nodes draining the mammary gland. We (in an animal experiment) developed a technology for mapping inguinal lymph nodes basedon two lymphotropic fluorescents glowing under the influence of a red laser range with a wavelength of 670 nm(methylene blue) and infrared laser radiation (green radiation). embedded in the layout of the hardware and software complex of extended photodynamic imaging for differentiation of lymphatic flow pathways of closely spacedorgans. A two-contrast fluorescence method for differentiating lymphatic flow from a number of disposed organs forming a single pool of regional lymph nodes has become the basis for radical mastectomy with axillary lymphadenectomy and preservation of lymphatic drainage from the upper extremity. Lymph nodes that glow under theinfluence of the red laser range (wave length 670 nm) and the infrared laser range (wavelength 780 nm) are considered common to the mammary gland and upper extremity. Based on the technology we have developed, there will be a paradigm shift in breast surgery: first intraoperative mapping of axillary lymph nodes draining the mammarygland and upper extremity, then mastectomy with axillary lymph node dissection with preservation of drainage fromthe upper extremity. Our invention "A device for photodynamic imaging for differentiation of lymphatic drainagepathways" according to the results of the formal examination of applications for invention 15.01.2019 receiveda positive conclusion of the Federal Institute of Industrial Property (application No. 2018146689/14 (077991)).
Keywords
рак молочной железы,
лимфедема верхней конечности,
картирование подмышечных лимфоузлов,
индоцианин зеленый,
метиленовый синий,
breast cancer,
upper extremity lymphedema,
axillary lymph node mapping,
indocyanine green,
methylene blueAuthors
Baytinger V.F. | Institute of Microsurgery; Krasnoyarsk State Medical University named after Prof. V.F. Voyno-Yasenetsky | baitinger@mail.tomsknet.ru |
Kurochkina O.S. | Institute of Microsurgery | kurochkinaos@yandex.ru |
Zvonarev Ye.G. | Toksovo Interdistrict Hospital | geka81_@mail.ru |
Loyt A.A. | Saint Petersburg State University | |
Bureyev A.Sh. | Diagnostica Ltd; Tomsk State University | artem_bureev@mail.ru |
Shum A.L. | Soft-Crisstal Ltd | |
Shirshin V.A. | Soft-Crisstal Ltd | victor.shirshin69@gmail.com |
Dikman Ye.Yu. | Diagnostica Ltd; Tomsk Polytechnic University | eka.dikman@gmail.com |
Всего: 8
References
Madden J.L. Modified radical mastectomy. Surgery, gynecology & obstetrics. 1965;121(6):1221.
Madden J.L., Kandalaft S., Bourque R. Modified radical mastectomy. Annals of surgery. 1972;175(5):624.
Noguchi M. et al. Axillary reverse mapping for preventing lymphedema in axillary lymph node dissection and/or sentinel lymph node biopsy. J. Surg. Oncol. 2010;101:217-221.
Noguchi M., Miura S., Morioka E. et al. Is axillary reverse mapping feasible in breast cancer patients? European Journal of Surgical Oncology (EJSO). 2015;41(4):442-449.
Thompson M., Korourian S., Henry-Tillman R. et al. Axillary reverse mapping (ARM): a new concept to identify and enhance lymphatic preservation. Annals of Surgical Oncology. 2007;14(6):1890.
Nos C., Kaufmann G., Clough K.B. et al. Combined axillary reverse mapping (ARM) technique for breast cancer patients requiring axillary dissection. Annals of surgical oncology. 2008;15(9)2550-2555.
Klimberg V.S. A new concept toward the prevention of lymphedema: axillary reverse mapping. Journal of surgical oncology. 2008;97(7):563-564.
Курочкина О.С., Байтингер В.Ф., Дудников А.В. Анатомия лимфатического русла верхней конечности: лимфодренаж от верхней конечности в норме и после подмышечной лимфодиссекции. Вопросы реконструктивной и пластической хирургии. 2018;(2(65)):39-49
Baytinger V.F., Bureev A.S., Kurochkina O.S., Dikman E.Yu., Shum A.L. Contemporary view of potential methods used to identify lymphatic system in case of breast cancer. Journal of Pharmaceutical Sciences and Research. 2017;9(12):2479-2485.
Baytinger V.F., Bureev A.S., Dikman E.Yu., Zvonarev E.G., Loyt A.A., Kurochkina O.S., Nam I.F., Shirshin V.A. New lymph node mapping technology. Int J Mech Eng Technol [Internet]. 2018;9(13):784-90.
Polom W., Markuszewski M., Rho Y.S., Matuszewski M. Usage of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urological oncology. Part 1. Cent European J Urol. 2014;67(2):142-148.
Schirmer R.H., Adler H., Pickhardt M., Mandelkow E. Lest we forget you - methylene blue. Neurobiol Aging. 2011;32(12): 2325.e7-е16.
Ashurst J, Wasson M. Methemoglobinemia: a systematic review of the pathophysiology, detection, and treatment. Del Med J. 2011;83(7):203-208.
Richards A., Marshall H., McQuary A. Evaluation of methylene blue, thia-mine, and/or albumin in the prevention of ifosfamide-related neurotoxicity. J Oncol Pharm Pract. 2011;17(4):372-380.
Tummers Q.R., Verbeek F.P., Schaafsma B.E., Boonstra M.C. van der Vorst J.R., Liefers G.J. et al. Real-time intraoperative detection of breast cancer using near-infrared fluorescence imaging and methylene blue. Eur J Surg Oncol. 2014;40(7):850-858.
Winer J.H., Choi H.S., Gibbs-Strauss S.L., Ashitate Y., Colson Y.L., Frangioni J.V. Intraoperative localization of insulinoma and normal pancreas using invis-ible near-infrared fluorescent light. Ann Surg Oncol. 2010;17(4):1094-1100.
Zakaria S., Hoskin T.L., Degnim A.C. Safety and technical success of meth-ylene blue dye for lymphatic mapping in breast cancer. Am J Surg. 2008;196(2):228-233.
Peek M.C., Charalampoudis P., Anninga B., Baker R., Douek M. Blue dye for identification of sentinel nodes in breast cancer and malignant melanoma: a systematic review and meta-analysis. Future Oncol. 2017;13(5):455-467.
Polom W., Markuszewski M., Rho Y.S., Matuszewski M. Usage of invisible near infrared light (NIR) fluorescence with indocyanine green (ICG) and methylene blue (MB) in urological oncology. Part 1. Cent European J Urol. 2014;67(2):142-148.
Polom W., Markuszewski M., Rho Y.S., Matuszewski M. Use of invisible near infrared light fluorescence withindocyanine green and methylene blue in urology. Part 2. Cent European J Urol. 2014;67(3):310-313.
van der Vorst J.R., Schaafsma B.E., Verbeek F.P., Swijnenburg R.J., Tummers Q.R., Hutteman M. et al. Intraoperative near-infrared fluorescence imaging of parathyroid adenomas with use of low-dose methylene blue. Head Neck. 2014;36(6):853-858.
Zakaria S., Hoskin T.L., Degnim A.C. Safety and technical success of meth-ylene blue dye for lymphatic mapping in breast cancer. Am J Surg. 2008;196(2):228-233.
Moody E.D., Viskari P.J., Colyer C.L. Non-covalent labeling of human serum albumin with indocyanine green: a study by capillary electrophoresis with diode laser-induced fluorescence detection. J Chromatogr B Biomed Sci Appl. 1999;729(1-2):55-64.
Ogawa M., Kosaka N., Choyke P.L., Kobayashi H. In vivo molecular imaging of cancer with a quenching nearinfrared fluorescent probe using conju-gates of monoclonal antibodies and indocyanine green. Cancer Res. 2009;69(4):1268-72.
TanakaE., Chen F.Y., Flaumenhaft R., Graham G.J., Laurence R.G., Frangioni J.V. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dual-channel near-infrared fluorescence imaging. J Thorac Cardiovasc Surg. 2009;138(1):133-40.
Deja M., Ahlers O., Macguill M., Wust P., Hildebrandt B., Riess H. et al. Changes in hepatic blood flow duringwhole body hyperthermia. Int J Hyperthermia. 2010;26(2):95-100.
Kang S.W., Chung S.E., Shin W.J., Lee J.H. Polypoidal choroidal vasculopathy and late geographic hyperfluorescence on indocyanine green angiography. Br J Ophthalmol. 2009;93(6):759-64.
Alander J.T., Kaartinen I., Laakso A., Patila T., Spillmann T., Tuchin V.V. et al. A review of indocyanine green fluorescent imaging in surgery. Int J Biomed Imaging (2012) 2012:940585.
Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging. 2009;8(6):341-54. Issues of Reconstructive and Plastic Surgery No. 3 (70) September’ 2019
Kudszus S., Roesel C., Schachtrupp A., Hoer J.J. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbecks Arch Surg. 2010;395(8): 1025-1030.
Schaafsma B.E., Mieog J.S., Hutteman M., van der Vorst J.R., Kuppen P.J., Lowik C.W. et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104(3):323-332.
Shimizu S., Kamiike W., Hatanaka N., Yoshida Y., Tagawa K., Miyata M. et al. New method for measuring ICGRmax with a clearance meter. World J Surg. 1995;19(1):113-8; discussion 118.
Kung T.A., Champaneria M.C., Maki J.H., Neligan P.C. Current concepts in the surgical management of lymphedema. Plast Reconstr Surg. 2017;139(4):1003e-1013e.
Yamamoto M., Orihashi K., Nishimori H., Wariishi S., Fukutomi T., Kondo N. et al. Indocyanine green angiography for intra-operative assessment in vas-cular surgery. Eur J Vasc Endovasc Surg. 2012;43(4):426-432.
Champagne B.J., Darling R.C. III, Daneshmand M., Kreienberg P.B., Lee E.C., Mehta M. et al. Outcome of aggressive surveillance colonoscopy in ruptured abdominal aortic aneurysm. J Vasc Surg. 2004;39(4):792-796.
Giunta R.E., Holzbach T., Taskov C., Holm P.S., Brill T., Busch R. et al. Prediction of flap necrosis with laser induced indocyanine green fluores-cence in a rat model. Br J Plast Surg. 2005;58(5):695-701.
Lamby P., Prantl L., Gais S., Walter M., Bachthaler M., Nerlich M. et al. Evaluation of the vascular integrity of free flaps based on microcirculation imaging techniques. Clin Hemorheol Microcirc. 2008;39(1-4):253-263.
Ishizawa T., Bandai Y., Ijichi M., Kaneko J., Hasegawa K., Kokudo N. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecys tectomy. Br J Surg. 2010;97(9):1369-1377.
Ishizawa T., Fukushima N., Shibahara J., Masuda K., Tamura S., Aoki T. et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):2491-2504.
Gotoh K., Yamada T., Ishikawa O., Takahashi H., Eguchi H., Yano M. et al. A novel image-guided surgeryof hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol. 2009;100(1): 75-79.
Ahmed M., Purushotham A.D., Douek M. Novel techniques for sentinel lymph node biopsy in breast cancer: a systematic review. Lancet Oncol. 2014;15:e351-e362.
Tanaka E., Chen F.Y., Flaumenhaft R., Graham G.J., Laurence R.G., Frangioni J.V. Real-time assessment of cardiac perfusion, coronary angiography, and acute intravascular thrombi using dualchannel near-infrared fluorescence imaging. J. Thorac Cardiovasc Surg. 2009 (in press).
Wichelewski J. 2014 ESC/ESA Guidelines on Non-Cardiac Surgery: Cardiovascular Assessment and Management. Russ J Cardiol. 2015;8(124):7-668 http://dx.doi.org/10.15829/1560-4071-2015-08-7-66
Gobardhan P.D., Wijsman J.H., Van Dalen T., Klompenhouwer E.G., van der Schelling G.P., Los J., Voogd A.C. et al. ARM: axillary reverse - the need for selection of patients. Eur J Surg Oncol. 2012;38:657-667.
Takada M., Takeuchi M., Suzuki E. et al: Real-time navigation system for sentinel lymph node biopsy in breastcancer patients using projection mapping with indocyanine green fluorescence. Breast Cancer. 2018.