EXPERIENCE OF USING OPTICAL DIAGNOSTICS METHODS TO DETERMINE THE TYPE OF CICATRICIAL DEFORMITY
With the development of modern technologies in the early diagnosis of cicatricial deformities of soft tissues, non-invasive research methods play an important role: spectroscopy, thermographic research, ultrasound, optical coherent tomography, optical diagnostics. All these methods have a number of advantages and disadvantages. Three patients with various types of cicatricial deformities of soft tissues took part in the pilot experiment. Studies by non-invasive optical methods were performed on day 21 after surgery in the area of the scar and healthytissue. The results of the pilot experiment showed that the methods of optical non-invasive diagnostics can detect differences in collagen fluorescence for different types of scars, as well as in indicators of microcirculation and specific Issues of Reconstructive and oxygen consumption. The methods of optical diagnostics will provide a timely forecast of the formation of varioustypes of scars in the early stages, which will allow to obtain a good cosmetic effect in the future.
Keywords
рубец,
рубцовая деформация,
лазерная допплеровская флоуметрия,
лазерная флюоресцентная диагностика,
коллаген,
эластин,
оптическая диагностика,
scar,
cicatricial deformation,
laser Doppler flowmetry,
laser fluorescence diagnostics,
collagen,
elastin,
optical diagnosticsAuthors
Andreeva V.V. | Moscow Region Research Clinical Institute named after M.F. Vladimirskiy | Viktoriaa@yandex.ru |
Kuzmina E.N. | Moscow Region Research Clinical Institute named after M.F. Vladimirskiy | workkuzmina@yandex.ru |
Raznitsyna I.A. | Moscow Region Research Clinical Institute named after M.F. Vladimirskiy | irbis-612@yandex.ru |
Всего: 3
References
Borthwick L.A., Wynn T.A., Fisher A.J. Cytokine mediated tissue fibrosis. Biochimica et biophysica acta (BBA)molecular basis of disease. 2013;1832(7):1049-1060. doi: 10.1016/j.bbadis.2012.09.014.
Lee K.C. et al. A systematic review of objective burn scar measurements. Burns & trauma. 2016;4(1):14. Doi: 10.1186/s41038-016-0036-x.
Perry D.M., McGrouther D.A., Bayat A. Current tools for noninvasive objective assessment of skin scars. Plastic and Reconstructive Surgery. 2010;126(3):912-923. doi:10.1097/PRS.0b013e3181e6046b.
Moncrieff M., Cotton S., Claridge E., Hall P. Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. British Journal of Dermatology. 2002;146(3):448-457. doi: 10.1046/j.13652133.2002.04569. x.
Anbar M. Quantitative Dynamic Telethermographv in Medical Diagnosis. CRC Press: Boca Raton, 1994. 180 p.
Riquet D., Houel N., Bodnar J. L. Stimulated infrared thermography applied to differentiate scar tissue from peri-scar tissue: a preliminary study. Journal of medical engineering & technology. 2016;40(6)307-314. doi: 10.1080/03091902.2016.1193239.
Шафранов В.В., Борхунова Е.Н., Таганов А.В., Короткий Н.Г., Виссарионов В.А., Стенько А.Г. Келоидные рубцы. Этиология, клиническая, морфологическая, физикальная диагностика и лечение СВЧ-криогенным методом: руководство для врачей. М., 2003. 192 c.
Богомолова Е.Б., Мартусевич А.К., Клеменова И.А., Янин Д.В., Галка А.Г. Применение современных методов визуализации в оценке состояния и прогнозировании развития патологических рубцов. Медицина. 2017;5(3):58-75.
Lau J.C.M., Li-Tsang C.W.P., Zheng Y.P. Application of tissue ultrasound palpation system (TUPS) in objective scar evaluation. Burns. 2005;31(4):445-452. doi: 10.1016/j.burns.2004.07.016
Bessonart M.N., Macedo N., Carmona C. High resolution B.scan ultrasound of hypertrophic scars. Skin Research and Technology. 2005;11(3):185-188. doi: 10.1111/j.1600-0846.2005.00118.x.
Gambichler T., Jaedicke V., Terras S. Optical coherence tomography in dermatology: technical and clinical aspects. Archives of dermatological research. 2011;303(7)457-473. doi: 10.1007/s00403-011-1152-x.
Krieg T., Aumailley M., Koch M., Chu M., Uitto J. Collagens, elastic fibers, and other extracellular matrix proteins of the dermis. Fitzpatrick’s dermatology in general medicine, 8th edition. McGraw-Hill; New York: 2012.
Abignano G., Aydin S. Z., Castillo-Gallego C., Liakouli V., Woods D., Meekings A., Wakefield R. J., McGonagle D. G., Emery P., Del Galdo F. Virtual skin biopsy by optical coherence tomography: the first quantitativeimaging biomarker for scleroderma. Annals of the rheumatic diseases. 2013;72(11):1845-1851. doi: 10.1136/annrheumdis-2012-202682.
Liu B., Vercollone C., Brezinski M. E. Towards improved collagen assessment: polarization-sensitive optical coherence tomography with tailored reference arm polarization. Journal of Biomedical Imaging. 2012;2012:2. doi: 10.1155/2012/892680.
Филиппова О.В., Афоничев К.А., Красногорский И.Н., Вашетко Р.В. Клинико-морфологические особенности сосудистого русла гипертрофической рубцовой ткани в разные сроки ее формирования. Ортопедия, травматология и восстановительная хирургия детского возраста. 2017;5(3):29-31. doi: 10.17816/PTORS5325-36.
Филатова И.А., Романова И.А. Первый опыт применения метода лазерной допплеровской флоуметрии в оценке состояния рубцов в различные сроки. Вестник Оренбургского государственного университета. 2010;(12(118-2)): 234-235
Козлов В.И., Мач Э.С., Литвин Ф.Б., Терман О.А. Метод лазерной допплеровской флоуметрии: пособие для врачей. М., 2001:22 с.
Hosoda G., Holloway G.A., Heimbach D.M. Laser Doppler flowmetry for the early detection of hypertrophicburn scars. The Journal of burn care & rehabilitation. 1986;7(6):496-497. doi: 10.1097/00004630-19861100000010.
Kumar I., Staton C.A., Cross S.S., Reed M.W.R., Brown N.J. Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery: Incorporating European Journal of Surgery and Swiss Surgery. 2009;96(12):1484-1491. doi: 10.1002/bjs.6778.
Gangemi E.N., Carnino R., Stella M. Videocapillaroscopy in postburn scars: in vivo analysis of the microcirculation. Burns. 2010;36(6):799-805. doi: 10.1016/j.burns.2010.02.002.
Ehrlich H.P., Kelley S.F. Hypertrophic scar: an interruption in the remodeling of repair--a laser Doppler blood flow study. Plastic and reconstructive surgery. 1992;90(6):993-998. doi: 10.1097/00006534-199212000-00009.
Тучин В.В. Оптическая биомедицинская диагностика. Известия Саратовского университета. Новая серия. Серия Физика. 2005;5(1):39-53
Суковатая И.Е., Кратасюк В.А., Межевикин В.В., Свидерская И.В., Есимбекова Е.Н., Немцева Е.В., Кудряшева Н.С. Фотобиофизика: учеб. пособие. Красноярск, 2008. 434 с.
Niessen F.B., Spauwen P.H., Schalkwijk J., Kon M. On the nature of hypertrophic scars and keloids: a review. Plastic and reconstructive surgery. 1999;104(5):1435-1458.
Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J Cell Sci. 2010;123(24):4195-4200. doi: 10.1242/jcs.023820.
Oliveira G.V., Hawkins H.K., Chinkes D. et al. Hypertrophic versus non hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: type I and III collagens. International wound journal. 2009;6(6):445-452. doi: 10.1111/j.1742-481X.2009.00638.x
Slemp A.E., Kirschner R.E. Keloids and scars: a review of keloids and scars, their pathogenesis, risk factors, and management. Current opinion in pediatrics. 2006;18(4):396-402. doi: 10.1097/01.mop.0000236389.41462.ef.
Chursinova Y.V., Kulikov D.A., Rogatkin D.A., Raznitsyna I.A., Mosalskaya D.V., Bobrov M.A., Petritskaya E.N., Molochkov A.V. Laser fluorescence spectroscopy and optical tissue oximetry in the diagnosis of skin fibrosis. Biomedical Photonics. 2019;8(1):38-45. doi: 10.24931/2413-9432-2019-8-1-38-45.
Крупаткин А.И., Сидоров В.В. Лазерная допплеровская флоуметрия микроциркуляции крови. М., 2005