Features of Mental Rotation of Two-Dimensional Objects of Different Types in the Frontal Plane
This research is a study of the mental rotation of 3 types of two-dimensional stimuli: verbalized, difficult-to-visualize single figures and visual rhythms, in order to identify significant factors affecting the correctness and speed of processing visual information of each type of stimuli. All stimuli were presented with 4 angles of rotation in the frontal plane: 30, 45, 90, 180°. Three age groups participated in the research: children from 5 to 8 (who are not in school), primary schoolchildren from 7 to 12 and adults 18 plus, with a total of 87 participants. The paper establishes a nonlinear dynamics of the time change for solving the problem of mental rotation with an increase in the angle of rotation of the figures: the shortest time was observed at an angle of 45 degrees, then it increased with an increase in the angle of rotation, and with an angle of rotation of 30 degrees, the reaction time was more then at 45 degrees. The interaction of factors such as the stimulus and the angle of rotation was also found to have a significant effect on the time needed to solve the problem: for different types of stimuli, the trajectory of the decision time depending on the angle of rotation has different curvature. It was revealed that the presence of a visual rhythm in the stimulus can significantly increase the response time at a rotation angle of 180 degrees. Since significant differences in the number of errors between preschoolers and younger schoolchildren was identified, the fact of age-related development of the mental rotation function was confirmed. In primary school children this function sufficiently develops. The data obtained will be useful in the development of visual communication tools and diagnostic techniques.
Keywords
visual perception,
series of figures,
mental rotation,
two-dimensional objects,
visual rhythms,
spatial abilities,
age development,
speed of perception,
perception errorsAuthors
| Galeeva Yana A. | Dubna State University | yanna_mail@mail.ru |
| Goncharov Oleg A. | Dubna State University | gonchar1000@gmail.com |
Всего: 2
References
Вюрпилло, Э. (1978). Восприятие пространства. В сб.: П. Фресс, Ж. Пиаже (сост.). Экспериментальная психология: пер. с фр., вып. 6 (с. 136-230). М.: Прогресс.
Галеева, Я. А., Гончаров, О. А. (2023). Особенности мысленного вращения фигур на примере визуальных ритмов в дошкольном возрасте. В сб.: Психология третьего тысячелетия: VIII Междунар. науч.-прак. Конф. «Актуальные вопросы современной психологии»: сб. материалов (с. 37-42). Дубна: Гос. ун-т «Дубна».
Галеева, Я. А., Гончаров, О. А. (2025). Роль восприятия визуального ритма в решении задач прогрессивных матриц Равена. Актуальные проблемы психологического знания, 3(72), 35-53.
Гончаров, О. А. (2007). Восприятие пространства и перспективные построения. СПб.: СПбГУ.
Ахутина Т.В. (ред.) (2016). Нейропсихологическое обследование детей 6-9 лет. М.: В. Секачев.
Семаго, Н. Я., Семаго М. М. (2016). Теория и практика углубленной психологической диагностики. От раннего до подросткового возраста. М.: Аркти.
Солсо, Р. Л. (2012). Когнитивная психология. СПб.: Питер.
Ченцов, Н. Ю., Симерницкая, Э. Г., Обухова, Л. Ф. (1980). Нейропсихологический анализ нарушений пространственных представлений у детей и взрослых. Вестник Московского университета, 14(3), 63-71.
Шиффман Х. Р. (2003). Ощущение и восприятие. СПб.: Питер.
Cheng, Y., Hegarty, M., & Chrastil, E. R. (2020). Telling right from right: the influence of handedness in the mental rotation of hands. Cognitive Research: Principals and Implications, 5(25). doi: 10.1186/s41235-020-00230-9.
Gogos, A., Gavrilescu, M., Davison, S., Searle, K., & Adams, J. (2010). Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: An fMRI study. Neuropsychologia, 48(2), 529-535. doi: 10.1016/j.neuropsychologia. 2009.10.013.
Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., & Paxinos, G. (2000). Selective right parietal lobe activation during mental rotation. A parametric PET study. Brain 123(1), 65-73. doi: 10.1093/brain/123.1.65.
Helie, S. (2017). The effect of integration masking on visual processing in perceptual categorization. Brain and Cognition, 16. 63-70. doi: 10.1016/j.bandc.2017.06.001.
Hertzog, С., & Rypma, B. (1991). Age differences in components of mental-rotation task performance. Bulletin of the Psychonomic Society, 29(2), 209-212. doi: 10.3758/BF03335237.
Huttenlocher, J., Newcombe, N., & Vasilyeva, M. (1999). Spatial scaling in young children. Psychological Science, 10(5), 393-398.
Ilic, M., & Bukic, A. (2017) Typology of spatial ability tests and its implementation in architectural study exams. Facta Universitatis Series: Architecture and Civil Engineering, 15(1), 1-14. doi: 10.2298/FUACE161113001I.
Jansen, P., & Kellner, J. (2015). The role of rotational hand movements and general motor ability in children’s mental rotation performance. Frontiers in Psychology, 6, 984. doi: 10.3389/fpsyg.2015.00984.
Johnson, A. M. (1990). Speed of mental rotation as a function of problem-solving strategies. Perceptual and Motor Skills, 71(3), 803-806. doi:10.2466/pms.1990.71.3.803.
Jones, B., & Anuza, T. (1982). Effects of sex, handedness, stimulus and visual field on “mental rotation.” Cortex, 18(4), 501-514. doi:10.1016/S0010-9452(82)80049-X.
Katsioloudis, P. A., Jovanovic, V., & Jones, M. (2014). A comparative analysis of spatial visualization ability and drafting models for industrial and technology education students. Journal of Technology Education, 26(1). doi: 10.21061/jte.v26i1.a.6.
Lauer, T., Willenbockel, V., & Maffongelli, L. (2020). The influence of scene and object orientation on the scene consistency effect. Behavioural Brain Research, 394, 112812. doi: 10.1016/j.bbr.2020.112812.
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621640. doi: 10.1037.0096-3445.130.4.621.
Moore, D. S., Moore, D. M., & Johnson, S. P. (2024). Minding the gap: A sex difference in young infants’ mental rotation through thirty degrees of arc. Frontiers in Psychology, 15, 1415651. doi: 10.3389/fpsyg.2024.1415651.
Moreau, D. (2012). Enhancing spatial ability through sport practice. Journal of Individual Differences, 33(2), 83-88. doi: 10.1027/1614-0001/A000075.
Nagy-Kondor, R., & Soros, C. (2012). Engineering students’ spatial abilities in Budapest and Debrecen. Annales Mathematicae et Informaticae, 40, 187-201.
Nissan, T., Shapira, O., & Liberman, N. (2015). Effects of power on mental rotation and emotion recognition in women. Personality and Social Psychology Bulletin, 41(10), 14251437. doi: 10.1177/0146167215598748.
Paivio, A. (1986). Mental Representations: A Dual Coding Approach. Oxford University Press.
Pietsch, S., & Jansen, P. (2012). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22(1), 159-163.
Plumert, J. M., & Hund, A. M. (2001). The development of memory for location: What role do spatial prototypes play? Child Development, 72(2), 370-384.
Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 1067-1070. doi: 10.1111/j.1467-9280.2008.02201.x.
Russeler, J., Scholz, J., Jordan, K., & Quaiser-Pohl, C. (2005). Mental rotation of letters, pictures, and three-dimensional objects in German dyslexic children. Child Neuropsychology, 11(6), 497-512. doi: 10.1080/09297040490920168.
Schmidt, M., Egger, F., Kieliger, M., Rubeli, B., & Schuler, J. (2016). Gymnasts and orienteers display better mental rotation performance than nonathletes. Journal of Individual Differences, 37(1), 1-7. doi: 10.1027/16140001/a000180.
Semrud-Clikeman, M., Fine, J. G., Bledsoe, J., & Zhu, D. C. (2012). Gender differences in brain activation on a mental rotation task.International Journal of Neuroscience, 122(10), 590-597. doi: 10.3109/00207454.2012.693999.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701-703.
Shepard, R. N., & Metzler, J. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 3-11.
Tittle, J. S., Todd, J. T., Perotti, V. J., & Norman, J. F. (1995). Systematic distortion of perceived three-dimensional structure from motion and binocular stereopsis. Journal of Experimental Psychology: Human Perception and Performance, 21(3), 663-678.
Todd, J. T., Chen, L., & Norman, J. F. (1998). On the relative salience of Euclidean, affine, and topological structure for 3-D form discrimination. Perception, 27(2), 273-282.
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599-604. doi: 10.2466/ pms.1978.47.2.599.
Wei, L., Li, X., Huang, L., Liu, Y., Hu, L., Shen, W., & Ding, Q. (2023). An fMRI study of visual geometric shapes processing. Frontiers in Neuroscience, 17, 1087488. doi: 10.3389/fnins.2023.1087488.
Weiss, M. M., Wolbers, T., Peller, M., Witt, K., Marshall, L., Buchel, C., & Siebner, H. R. (2009). Rotated alphanumeric characters do not automatically activate frontoparietal areas subserving mental rotation. NeuroImage, 44(3), 1063-1073. doi: 10.1016/j.neuroimage.2008.09.042.
Winter, J. C. F., Dodou, D., & Eisma, Y. B. (2023). Responses to Raven matrices: Governed by visual complexity and centrality. Perception, 52(9), 645-661. doi: 10.1177/ 03010066231178149.
Wyurpillo, E. (1978). Vospriyatie prostranstva [Perception of Space]. In P. Fress, & J. Piaget (Eds.), Eksperimental’nayapsikhologiya [Experimental Psychology] (Trans. from French). Vol. 6 (pp. 136-230). Moscow: Progress.