Extrafoveal Analysis of Categorically Defined Stereometric Shapes | Sibirskiy Psikhologicheskiy Zhurnal – Siberian Journal of Psychology. 2019. № 72. DOI: 10.17223/17267080/72/4

Extrafoveal Analysis of Categorically Defined Stereometric Shapes

The article outlines the possibilities of extrafoveal analysis during a conceptual visual search, when the target stimulus represents a geometric concept with an unknown form. The previous works have shown that when the target and distractors are widely diverging, the very first saccade is headed towards the target or the answer is given without any saccades, suggesting that the target is recognized extrafoveally. Our experimental design and data analysis intend to reveal extrafoveal processing of visualized concepts while saccades planning. We made the stimuli harder varying two factors: the difficulty of the target shape and its similarity to the distractors to determine the limit of complexity when the stimulus becomes too complex to be processed extrafoveally. Twelve participants with normal or corrected-to-normal vision took part in Experiment 1 and eighteen in Experiment 2. Four images of stereometric shapes were spaced at an equal distance from the center. In the first experiment, we got 2x2 design: the targets were (1) either prisms or pyramids with 3 to 6 base angles (shapes with each amount of angles were presented in an every probe) (2) among either prisms or pyramids as distractors. We received drastically different results for each of four types of the task. When searching for a target prism among pyramids, the observers made a single saccade or even no saccades towards the target. In the task with the target pyramid among prisms, the performance was a bit more difficult. A target prism among other prisms was a yet harder but still a solvable task. At last, searching for the target pyramid among other pyramids was proved to be so challenging that the amount of saccades evidenced the random search for the target shape by most participants. In the second experiment, we investigated the aforementioned last condition; so, 144 sets of pyramids were presented. Additionally, in the last 16 probes the participants were required to avoid any saccades away from the center. The findings revealed similar tendencies with the first experiment; additionally, it has been found that participants have never shown any significant decrease of saccade amount before the target is reached during the whole experiment. Moreover, one participant demonstrated a mean quantity of saccades that was significantly lower than the random one, but this parameter tended to increase from the beginning to the end of the experiment. However, in the last probes in case of fixed eye movements, most participants gave significantly more right answers comparatively to random guessing, the use of extrafoveal analysis was possible for them. Our findings indicate that extrafoveal processing as a part of conceptual visual search appears to be one of the possible behavioral acts in the complex system of perceptual action, rather than a merely low-level mechanism of saccade planning. The choice to use or not to use extrafoveal analysis is based upon comparing the required energy cost, necessity of foveal confirmation and the estimating subjective cost of a mistake.

Download file
Counter downloads: 160

Keywords

экстрафовеальный анализ, подведение под понятие, зрительный поиск, явное и скрытое внимание, трехмерные фигуры, движения глаз, extrafoveal analysis, concept processing, visual search, overt and covert attention, stereometric shapes, eye movements

Authors

NameOrganizationE-mail
Dreneva Anna A.Lomonosov Moscow State Universityannadrenyova@mail.ru
Krichevets Anatolij N.Lomonosov Moscow State Universityankrich@mail.ru
Chumachenko Dmitrij V.Lomonosov Moscow State Universitydmitry.chumachenko@gmail .com
Shvarts Anna Y.Lomonosov Moscow State University; Utrecht Universityshvarts.anna@gmail.com
Всего: 4

References

Carrasco M. et al. Feature asymmetries in visual search: Effects of display duration, target eccentricity, orientation and spatial frequency // Vision Research. 1998. V. 38, № 3. С. 347-374. DOI: 10.1016/S0042-6989(97)00152-1.
Rosenholtz R. et al. A summary statistic representation in peripheral vision explains visual search // Journal of vision. 2012. V. 12, № 4. Р. 14-14. DOI: 10.1167/12.4.14.
Schutz A.C., Braun D.I., Gegenfurtner K.R. Eye movements and perception: a selective review // Journal of vision. 2011. V. 11, № 5. Р. 9. DOI: 10.1167/11.5.9.
Anderson S.J., Mullen K.T., Hess R.F. Human peripheral spatial resolution for achromatic and chromatic stimuli: limits imposed by optical and retinal factors // The Journal of Physiology. 1991. V. 442, № 1. Р. 47-64. DOI: 10.1113/jphysiol. 1991.sp018781.
Tatler B.W. et al. Eye guidance in natural vision: Reinterpreting salience // Journal of vision. 2011. V. 11, № 5. Р. 5. DOI: 10.1167/11.5.5.
Rovamo J., Virsu V. An estimation and application of the human cortical magnification factor // Experimental brain research. 1979. V. 37, № 3. Р. 495-510. DOI: 10.1007/BF00236819.
Harvey B.M., Dumoulin S.O. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture // Journal of Neuroscience. 2011. V. 31, № 38. Р. 13604-13612. DOI: 10.1523/JNEUROSCI.2572-11.2011.
Polat U., Sagi D. Lateral interactions between spatial channels: suppression and facilitation revealed by lateral masking experiments // Vision research. 1993. V. 33, № 7. Р. 993-999. DOI: 10.1016/0042-6989(93)90081-7.
Lettvin J.Y. On seeing sidelong // The Sciences. 1976. V. 16, № 4. Р. 10-20. DOI: 10.1002/j.2326-1951.1976.tb01231.x.
Pelli D.G., Palomares M., Majaj N.J. Crowding is unlike ordinary masking: Distinguishing feature integration from detection // Journal of vision. 2004. V. 4, № 12. Р. 12. DOI: 10.1167/4.12.12.
Treisman A.M., Gelade G.A feature-integration theory of attention // Cognitive psychology. 1980. V. 12, № 1. Р. 97-136. DOI: 10.1016/0010-0285(80)90005-5.
Zhang L. et al. SUN: a Bayesian framework for saliency using natural statistics // Journal of vision. 2008. V. 8, № 7. Р. 32. DOI: 10.1167/8.7.32.
Rosenholtz R., Huang J., Ehinger K.A. Rethinking the role of top-down attention in vision: Effects attributable to a lossy representation in peripheral vision // Frontiers in psychology. 2012. V. 3. Р. 13. DOI: 10.3389/fpsyg.2012.00013.
Wolfe J.M., Horowitz T.S. What attributes guide the deployment of visual attention and how do they do it? // Nature reviews neuroscience. 2004. V. 5, № 6. Р. 495. DOI: 10.1038/nrn1411.
Enns J.T., Rensink R.A. Influence of scene-based properties on visual search // Science. 1990. V. 247, № 4943. Р. 721-723. DOI: 10.1126/science.2300824.
Ramachandran V.S. Perception of shape from shading // Nature. 1988. V. 331, № 6152. Р. 163. DOI: 10.1038/331163a0.
Ostrovsky Y., Cavanagh P., Sinha P. Perceiving illumination inconsistencies in scenes // Perception. 2005. V. 34, № 11. Р. 1301-1314. DOI: 10.1068/p5418.
Zhang X. et al. Cube search, revisited // Journal of Vision. 2015. V. 15, № 3. Р. 9. DOI: 10.1167/15.3.9.
Wolfe J.M., Horowitz T.S. Five factors that guide attention in visual search // Nature Human Behaviour. 2017. V. 1, № 3. Р. 0058. DOI: 10.1038/s41562-017-0058.
Treisman A. How the deployment of attention determines what we see // Visual cognition. 2006. V. 14, № 4-8. Р. 411-443. DOI: 10.1080/13506280500195250.
Godijn R., Theeuwes J. Parallel allocation of attention prior to the execution of saccade sequences // Journal of Experimental Psychology: Human Perception and Performance. 2003. V. 29, № 5. Р. 882. DOI: 10.1016/j.visres.2007.10.030.
Baldauf D., Deubel H. Properties of attentional selection during the preparation of sequential saccades // Experimental Brain Research. 2008. V. 184, № 3. Р. 411-425. DOI: 10.1007/s00221-007-1114-x.
Cajar A., Engbert R., Laubrock J. Spatial frequency processing in the central and peripheral visual field during scene viewing // Vision Research. 2016. V. 127. Р. 186-197. DOI: 10.1016/j.visres.2016.05.008.
Deubel H. The time course of presaccadic attention shifts // Psychological research. 2008. V. 72, № 6. Р. 630. DOI: 10.1007/s00426-008-0165-3.
Kristjansson A. Rapid learning in attention shifts: A review // Visual Cognition. 2006. V. 13, № 3. Р. 324-362. DOI: 10.1167/17.2.21.
Кричевец А.Н. и др. Возможности экстрафовеального восприятия геометрических фигур // Вопросы психологии. 2017. № 6. С. 117-128.
Yang H., Zelinsky G.J. Visual search is guided to categorically-defined targets // Vision research. 2009. V. 49, № 16. Р. 2095-2103. DOI: 10.1016/j.visres.2009.05.017.
Rosch E. Cognitive representations of semantic categories // Journal of experimental psychology: General. 1975. V. 104, № 3. Р. 192. DOI: 10.1037/0096-3445.104.3.192.
Goodwin C. Professional vision // American anthropologist. 1994. V. 96, № 3. Р. 606633. DOI: 10.1525/aa.1994.96.3.02a00100.
Radford L. The eye as a theoretician: Seeing structures in generalizing activities // For the learning of mathematics. 2010. V. 30, № 2. Р. 2-7. DOI: 10.2307/20749442.
Krichevets A.N., Shvarts A.Y., Chumachenko D.V. Perceptual action of novices and experts in operating visual representations of a mathematical concept // Психология. Журнал Высшей школы экономики. 2014. Т. 11, № 3. С. 55-78.
Gegenfurtner A., Lehtinen E., Saljo R. Expertise differences in the comprehension of visualizations: A meta-analysis of eye-tracking research in professional domains // Educational Psychology Review. 2011. V. 23, № 4. Р. 523-552. DOI: 10.1007/s10648-011-9174-7.
Чумаченко Д.В., Шварц А.Ю. Проблема трансформации перцептивных процессов в ходе обучения: анализ исследований, выполненных методом записи движений глаз, с позиций деятельностного подхода // Психологические исследования : электронный научный журнал. 2016. Т. 9, № 49. С. 12.
Muinos M., Ballesteros S. Peripheral vision and perceptual asymmetries in young and older martial arts athletes and nonathletes // Attention, Perception, & Psychophysics. 2014. V. 76, № 8. Р. 2465-2476. DOI: 10.1068/p7567.
Rienhoff R. et al. Field of vision influences sensory-motor control of skilled and less-skilled dart players // Journal of sports science & medicine. 2012. V. 11, № 3. Р. 542.
Trick L.M., Pylyshyn Z.W. What enumeration studies can show us about spatial attention: evidence for limited capacity preattentive processing // Journal of Experimental Psychology: Human Perception and Performance. 1993. V. 19, № 2. Р. 331. DOI: 10.1037//0096-1523.19.2.331.
Treisman A., Gormican S. Feature analysis in early vision: evidence from search asymmetries // Psychological review. 1988. V. 95, № 1. Р. 15. DOI: 10.1037/0033-295X.95.1.15.
Williams D.E., Reingold E.M. Preattentive guidance of eye movements during triple conjunction search tasks: the effects of feature discriminability and saccadic amplitude // Psy-chonomic Bulletin & Review. 2001. V. 8, № 3. Р. 476-488. DOI: 10.3758/BF03196182.
 Extrafoveal Analysis of Categorically Defined Stereometric Shapes | Sibirskiy Psikhologicheskiy Zhurnal – Siberian Journal of Psychology. 2019. № 72. DOI: 10.17223/17267080/72/4

Extrafoveal Analysis of Categorically Defined Stereometric Shapes | Sibirskiy Psikhologicheskiy Zhurnal – Siberian Journal of Psychology. 2019. № 72. DOI: 10.17223/17267080/72/4

Download full-text version
Counter downloads: 1088