Online Short Spatial Ability Battery (OSSAB): Psychometric Norms for Older Students
The need for STEM specialists is growing in current technologically-oriented economy. This calls for new approaches in evaluation and development of relevant abilities and skills. However, the current educational systems might miss some students who have high potential for this field or who can develop such potential. For example, according to the results of one Russian study, gifted children may be missed by existing methods of talent search, partially due to the lack of standardised psychometric tests, especially of abilities beyond verbal and numerical abilities. One important predictor of STEM, often neglected in education, is spatial ability. Recently an online short spatial ability battery (OSSAB) for use in adolescent populations was developed. However, no published norms are available. The aim of this study was to develop normalised thresholds for spatial ability testing using OSSAB battery with Russian 13-17 year old schoolchildren. Schoolchildren from the Sirius Educational Centre, demonstrating high achievement in 3 different areas: science (N = 640; 238 females), sports (N = 436; 67 females) and art (N = 260; 204 females), and schoolchildren (N = 752; 350 females) from general education schools of the Russian Federation participated in the study. Age of participants: 13-17 (M = 15.01; SD = 1.18). The study identified thresholds for 8 spatial ability levels: from Very low ability to Extraordinary giftedness. These thresholds can be used by teachers and school psychologists to determine the level of spatial ability in schoolchildren of 13-17 years of age. Based on individual students' current levels of spatial ability, teachers can provide individual support and recommendations. For high performance recommendations may include additional classes in STEM or natural sciences, for example, electronics, robotics, programming, physics or chemistry. For lower performance recommendations may include computer games containing spatial components; sports; playing musical instruments; origami classes; and studying the Chinese language. More broadly, school curricula in different subjects should include more spatial elements, such as: inclusion of stereometric tasks in learning materials; computer programs for modelling in teaching geometry and other subjects; adding visualizations (graphs and tables) when explaining material. Overall, the results of this study suggest that a significant number of children have very low or very high level of spatial ability in both mainstream schools and in educational centres for high-preforming students. The norms developed in this study can be used for identification and individualized support in all educational settings.
Keywords
giftedness,
talent development programmes,
recommendations,
psychometric tests,
norming,
spatial abilityAuthors
Likhanov Maxim V. | Sirius University of Science and Technology | lihanov.mv@talantiuspeh.ru |
Tsigeman Elina S. | Sirius University of Science and Technology | tsigeman.es@talantiuspeh.ru |
Kovas Yulia V. | University of London; Tomsk State University | y.kovas@gold.ac.uk |
Всего: 3
References
Ashton E.J., Mah K.W., Rivers P.L. Spatialising the curriculum // Journal of Curriculum Studies. 2020. Vol. 52 (2). P. 177-194. DOI: 10.1080/00220272.2019.1657956.
Khine M.S. Visual-spatial ability in STEM education: transforming research into practice. NewYork : Springer, 2017. DOI: 10.1007/978-3-319-44385-0.
Boakes N.J. The effects of origami lessons on students' spatial visualization skills and achievement levels in a seventh-grade mathematics classroom : doctoral dissertation (UM № 8626739). Temple University, 2006. DOI: 10.13140/RG.2.1.4399.6565.
Rodic M., Tikhomirova T., Kolienko T., Malykh S., Bogdanova O., Zueva D.Y., Kovas Y. Spatial complexity of character-based writing systems and arithmetic in primary school: a longitudinal study // Frontiers in psychology. 2015. Vol. 6:333. DOI: 10.3389/fpsyg.2015.00333.
Hetland L. Learning to make music enhances spatial reasoning // Journal of aesthetic education. 2000. Vol. 34 (3/4). P. 179-238. DOI: 10.2307/3333643.
Jansen P., Ellinger J., Lehmann J. Increased physical education at school improves the visual-spatial cognition during adolescence // Educational Psychology. 2018. Vol. 38 (7). P. 964-976. DOI: 10.1080/01443410.2018.1457777.
De Lisi R., Wolford J.L. Improving children's mental rotation accuracy with computer game playing // The Journal of genetic psychology. 2002. Vol. 163 (3). P. 272-282. DOI: 10.1080/00221320209598683.
Uttal D.H., Meadow N.G., Tipton E., Hand L.L., Alden A.R., Warren C., Newcombe N.S. The malleability of spatial skills: a meta-analysis of training studies // Psychological bulletin. 2013. Vol. 139 (2). P. 352-402. DOI: 10.1037/a0028446.
Бондарь А.А., Мамалыга Р.Ф. Формирование пространственного мышления обучающихся 10-11 классов в процессе решения стереометрических задач ЕГЭ // Педагогическое образование в России. 2019. № 3. С. 21-27. DOI: 10.26170/po19-03-03.
Аристова И.Л., Аристова И.Л., Есипенко Е.А., Шарафиева К.Р., Масленникова Е.П., Чипеева Н.А., Фекличева И.В., Ковас Ю.В. Пространственные способности: структура и этиология // Вопросы психологии. 2018. № 1. С. 118-126.
Resing W., Blok J.B. De classificatie van intelligentiescores: Voorstel voor een eenduidig systeem // Psycholoog. 2002. Vol. 37 (5). P. 244-249.
Общеобразовательные программы, образовательные программы среднего профессионального образования, образовательные программы высшего образования // Федеральная служба государственной статистики. URL: https://rosstat.gov.ru/folder/13398 (дата обращения 17.09.2020)
Malanchini M., Rimfeld K., Shakeshaft N.G., McMillan A., Schofield K.L., Rodic M., Plomin R. Evidence for a unitary structure of spatial cognition beyond general intelligence // NPJ science of learning. 2020. Vol. 5 (1). P. 1-13. DOI: 10.1038/s41539-020-0067-8.
Field A. Discovering Statistics Using SPSS, Third Edition. London : Sage Publications Ltd., 2009. 821 p.
Lakin J.M., Wai J. Spatially gifted, academically inconvenienced: Spatially talented students experience less academic engagement and more behavioural issues than other talented students // British Journal of Educational Psychology. 2020. Vol. 1. DOI: 10.1111/bjep.12343.
Gohm C.L., Humphreys L.G., Yao G. Underachievement among spatially gifted students // American Educational Research Journal. 1998. Vol. 35 (3). P. 515-531. DOI: 10.3102/00028312035003515.
Likhanov M.V., Ismatullina V.I., Fenin A.Y., Wei W., Rimfeld K., Maslennikova E.P., Budakova A.V. The factorial structure of spatial abilities in Russian and Chinese students // Psychology in Russia: State of the art. 2018. Vol. 11 (4). P. 96-114. DOI: 10.11621/pir.2018.0407.
Kell H.J., Lubinski D., Benbow C.P., Steiger J.H. Creativity and technical innovation: Spatial ability's unique role // Psychological science. 2013. Vol. 24 (9). P. 1831-1836. DOI: 10.1177/0956797613478615.
Andersen L. Visual-spatial ability: Important in STEM, ignored in gifted education // Roeper Review. 2014. Vol. 36 (2). P. 114-121. DOI: 10.1080/02783193.2014.884198.
Shea D.L., Lubinski D., Benbow C.P. Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study // Journal of Educational Psychology. 2001. Vol. 93 (3). P. 604. DOI: 10.1037/0022-0663.93.3.604.
Tosto M.G., Hanscombe K.B., Haworth C.M., Davis O.S., Petrill S.A., Dale P.S., Kovas Y. Why do spatial abilities predict mathematical performance? // Developmental science. 2014. Vol. 17 (3). P. 462-470. DOI: 10.1111/desc.12138.
Gilligan K.A., Flouri E., Farran E.K. The contribution of spatial ability to mathematics achievement in middle childhood // Journal of experimental child psychology. 2017. Vol. 163. P. 107-125. DOI: 10.1016/j.jecp.2017.04.016.
Kell H.J., Lubinski D. Spatial ability: a neglected talent in educational and occupational set tings // Roeper Review. 2013. Vol. 35 (4). P. 219-230. DOI: 10.1080/02783193.2013.829896.
Hegarty M., Montello D.R., Richardson A.E., Ishikawa Т., Lovelace K. Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning // Intelligence. 2006. Vol. 34 (2). P. 151-176. DOI: 10.1016/j.intell.2005.09.005.
Рубцов В.В., Журавлев А.Л., Марголис А.А., Ушаков Д.В. Образование одаренных государственная проблема // Психологическая наука и образование. 2009. Т. 14, № 4. С. 5-14.
Rimfeld K., Shakeshaft N.G., Malanchini M., Rodic M., Selzam S., Schofield K., Plomin R. Phenotypic and genetic evidence for a unifactorial structure of spatial abilities // Proceedings of the National Academy of Sciences. 2017. Vol. 114 (10). P. 2777-2782. DOI: 10.1073/pnas.1607883114.
Бондаренко Н.В., Бородина Д.Р., Гохберг Л.М., Ковалева Н.В., Кузнецова В.И., Озе рова О.К., Саутина Е.В., Шугаль Н.Б. Индикаторы образования: 2020 : стат. сборник. М. : НИУ ВШЭ, 2020. 496 с.