Trends and Prospects of Using Brain-Computer Interfaces in Education
The relevance of the brain-computer interfaces (BCI) implementation in the field of education is conditioned by the realization of long-life and individualized learning concepts, as well as the requirement of effective and affordable automated learning systems. The article presents the analysis of studies on BCI usage in the educational process, in order to systematize the evidence, identify emerging trends and determine the difficulties and prospects of their applications in education. Nowadays, two main directions of BCI application for the purpose of training quality improvement are revealed. In the first direction, the researchers' attention is focused on psycho-physiology, meaning the identification of student's current state characteristics and its timely correction with the teacher's help (or self-correction). The second one emphasizes the pedagogical aspect of BCI usage, such as monitoring the student's cognitive activity in the process of course content perception to determine the most optimal parameters and conditions of its presentation. In the first case, the change of a student's state or activity is emphasized, in the second one the changes relate to correction of learning content and its delivery. Among the main difficulties of using BCI in education are the following: problems with the equipment of modern BCI systems, the lack of clear classifications of neurophysiological correlates of various mental phenomena, the difficulty of consideration and differentiation of all the factors affecting a user during his interaction with BCI in natural environment. The prospects of BCI usage in learning are proposed: 1. Prediction of learning activity productivity; 2. Development of students' self-control in the educational process; 3. Real-time identification of cognitive and affective students' states in learning certain subjects (mathematics, physics, computer science, etc.); 4. Assessment of the impact of electronic learning tools on the process of information acquisition; 5. Monitoring the dynamics of cognitive activity intensity in students while solving different learning tasks; 6. Identification of the available amount of information for its successful processing at the neurophysiological level to optimize the delivery of learning materials.
Keywords
brain-computer interfaces,
the education quality improvement,
e-learning,
learning activityAuthors
Gnedykh Daria S. | St. Petersburg State University | d.gnedyh@spbu.ru |
Всего: 1
References
Wolpaw J.R., Birbaumer N., Heetderks W.J., McFarland D.J., Peckham P.H., Schalk G., Donchin E., Quatrano L.A., Robinson C.J., Vaughan T.M. Brain-Computer Interface Technology: a review of the First International Meeting // IEEE Transactions on rehabilitation engineering. 2000. Vol. 8, № 2. P. 164-173.
Kubler A., Muller K.R. An introduction to brain computer interfacing // Toward braincomputer interfacing / G. Dornhege, J. del R. Millan, T. Hinterberger, D. McFarland, K.R. Muller (eds.). Cambridge, MA : MIT Press, 2007. P. 1-25.
Wolpaw J.R., Wolpaw E.V. Brain-computer interfaces: Principles and practice. New York : Oxford University Press, 2012. 424 p.
Zaharija G., Bogunovic P., Mladenovic S. Brain computer interface in enhanced learning system // Proceedings of 12th International Technology, Education and Development Conference. 2018. P. 198-205.
Mak J.N., Wolpaw J.R. Clinical applications of brain-computer interfaces: Current state and future prospects // IEEE Review of Biomedical Engineering. 2009. Vol. 2. P. 187-199.
Zhang J., Jadavji Z., Zewdie E., Kirton A. Evaluating If Children Can Use Simple Brain Computer Interfaces // Frontiers in Human Neuroscience. 2019. Vol. 13. Article 24. DOI: 10.33 89/fnhum.2019.00024.
Перепелкина О.С., Васильев А.Н., Либуркина С.П., Ганин И.П., Каплан А.Я. Изучение эффективности освоения пациентами с двигательными нарушениями технологии «Интерфейс мозг-компьютер, основанный на представлении движений» (пилотное исследование) // Когнитивная наука в Москве: новые исследования : материалы конф., 16 июня 2015 г. / под ред. Е.В. Печенковой, М.В. Фаликман. М. : Буки Веди, 2015. С. 346-351.
Каплан А.Я. Нейрофизиологические основания и практические реализации техноло гии мозг-машинных интерфейсов в неврологической реабилитации // Физиология человека. 2016. № 42 (1). C.118-127.
Naros G., Gharabaghi A. Reinforcement learning of self-regulated P-oscillations for motor restoration in chronic stroke // Frontiers in Human Neuroscience. 2015. Vol. 9. Article 391. DOI: 10.3389/fnhum.2015.00391
Котов С.В., Турбина Л.Г., Бобров П.Д., Фролов А.А., Павлова О.Г., Курганская М.Е., Бирюкова Е.В. Применение комплекса «интерфейс мозг компьютер и экзоскелет» и техники воображения движения для после инсульта // Альманах клинической медицины. 2015. № 39. C. 15-21.
Люкманов Р.Х., Азиатская Г.А., Мокиенко О.А., Варако Н.А., Ковязина М.С., Супо-нева Н.А., Черникова Л.А., Фролов А.А., Пирадов М.А. Интерфейс мозг-компьютер в постинсультной реабилитации: клинико-нейропсихологическое исследование // Журнал неврологии и психиатрии им. С.С. Корсакова. 2018. № 118 (8). C. 43-51.
Comaniciu A., Najafizadeh L. Enabling communication for locked-in syndrome patients using deep learning and an emoji-based brain computer interface // IEEE Biomedical Circuits and Systems Conference (BioCAS) - Advanced Systems for Enhancing Human Health, Cleveland, OH, October 17-19, 2018. P. 41-44.
Van Erp J., Lotte F., Tangermann M. Brain-Computer Interfaces: Beyond Medical Applications // Computer. 2012. Vol. 45 (4). P. 26-34.
Abdulkader S.N., Atia A., Mostafa M.-S.M. Brain computer interfacing: Applications and challenges // Egyptian Informatics Journal. 2015. Vol. 16. P. 213-230.
Gao S., Wang Y., Gao X., Hong B. Visual and auditory brain-computer interfaces // IEEE Transactions on Biomedical Engineering. 2014. Vol. 61 (5). P. 1436-1447.
Wang Y.T., Wang Y., Jung T.P. A cell-phone-based braine-computer interface for communication in daily life // Journal of Neural Engineering. 2011. Vol. 8 (2). P. 1-5.
Ungureanu F., Lupu R.G. The assessment of learning emotional state using EEG headsets // Proceedings of 11th International Scientific Conference on eLearning and Software for Education. 2015. P. 587-593.
Zander T.O., Kothe C., Jatzev S., Gaertner М. Enhancing human-computer interaction with input from active and passive brain-computer interfaces // Brain-Computer Interfaces / D. Tan, A. Nijholt (eds.). London : Springer, 2010. P. 181-199. DOI: 10.1007/978-1-84996-272-8_11. (Human-Computer Interaction Series).
Asteriadis S., Tzouveli P., Karpouzis K., Kollias S. Estimation of behavioral user state based on eye gaze and head pose-application in an e-learning environment // Multimed Tools Application. 2009. Vol. 41. P. 469-493.
Park N., Zhu W., Jung Y., McLaughlin M., Jin S. Utility of haptic data in recognition of user state // Proceedings of HCI International. 2005. Vol. 11. URL: https://pdfs.semanticscholar.org/ e0f0/c5cca081b810b2319811f296a5d811583a97.pdf
Бордовская Н.В., Костромина С.Н. Психология образования в современном мире (итоги международной научно-практической конференции «Ананьевские чтения -2012») // Вестник Санкт-Петербургского университета. 2013. № 16 (2). C. 67-78.
Lance B.J., Kerick S.E., Ries A.J., Oie K.S., McDowell K. Brain-Computer interface technologies in the coming decades // Proceedings of the IEEE. Special Centennial Issue. 2012. Vol. 100. P. 1585-1599. DOI: 10.1109/JPROC.2012.2184830.
Cinel C., Valeriani D., Poli R. Neurotechnologies for human cognitive augmentation: Current state of the art and future prospects // Frontiers in Human Neuroscience. 2019. Vol. 13. Article 13. DOI: 10.3389/fnhum.2019.00013.
Xu J., Zhong B. Review on portable EEG technology in educational research // Computers in Human Behavior. 2018. Vol. 81. P. 340-349.
Zhou Y., Xu T., Cai Y.P., Wu X.J., Dong B. Monitoring cognitive workload in online videos learning through an EEG-based brain-computer interface // Learning and Collaboration Technologies. Novel Learning Ecosystems : 4th International Conference, LCT 2017 / P. Zaphiris, A. Ioannou (eds.). Springer, Cham, 2017. P. 64-73. (Lecture Notes in Computer Science. Vol. 10295).
Serrhini M., Dargham A. Toward incorporating bio-signals in online education case of assessing student attention with BCI // Europe and MENA Cooperation Advances in Information and Communication Technologies / A. Rocha, M. Serrhini, C. Felgueiras (eds.). Springer, Cham, 2017. P. 135-146. DOI: 10.1007/978-3-319-46568-5_14. (Advances in Intelligent Systems and Computing. Vol. 520).
Александрова Н.А., Черняева Т.Н. Исследование внимания обучающихся в ситуации информационно-технологического прорыва в образовании // Сибирский педагогический журнал. 2019. № 1. C. 130-138.
Lin C.S., Lai Y.C., Lin J.C., Wu P.Y., Chang H.C. A novel method for concentration evaluation of reading behaviors with electrical activity recorded on the scalp // Computer Methods and Programs in Biomedicine. 2014. Vol. 114 (2). P. 164-171.
Sun J.C.Y., Yeh K.P.C. The effects of attention monitoring with EEG biofeedback on university students' attention and self-efficacy: the case of antiphishing instructional materials // Computers and Education. 2017. Vol. 106. P. 73-82.
Mokhtar R., Sharif N., Zin N.A.M., Ihsan S.N. Assessing attention and meditation levels in learning process using brain computer interface // Proceedings of the International Conference on Computer, Communication, and Control Technology. 2017. Vol. 23 (6). P. 5569-5572.
Chen C.M., Wang J.Y. Effects of online synchronous instruction with an attention monitoring and alarm mechanism on sustained attention and learning performance // Interactive Learning Environments. 2017. Vol. 25 (4). P. 427-443. DOI: 10.1080/10494820. 2017.1341938.
Lai C.H., Liu M.C., Liu C.J., Huang Y.M. Using positive visual stimuli to lighten the online learning experience through in class questioning // International Review of Research in Open and Distributed Learning. 2016. Vol. 17 (1). P. 23-41.
Huang Y.M., Liu M.C., Lai C.H., Liu C.J. Using humorous images to lighten the learning experience through questioning in class // British Journal of Educational Technology. 2017. Vol. 48 (3). P. 878-896.
Wei C.C., Ma M.Y. Influences of visual attention and reading time on children and adults // Reading and Writing Quarterly. 2017. Vol. 33 (2). P. 97-108.
Chen C.M., Lin Y.J. Effects of different text display types on reading comprehension, sustained attention and cognitive load in mobile reading contexts // Interactive Learning Environments. 2016. Vol. 24 (3). P. 553-571.
Ma M.Y., Wei C.C. A comparative study of children's concentration performance on picture books: Age, gender, and media forms // Interactive Learning Environments. 2016. Vol. 24 (8). P. 1922-1937.
Shadiev R., Wu T.T., Huang Y.M. Enhancing learning performance, attention, and meditation using a speech-to-text recognition application: Evidence from multiple data sources // Interactive Learning Environments. 2017. Vol. 25 (2). P. 249-261.
Wang C.C., Hsu M.C. An exploratory study using inexpensive electroencephalography (EEG) to understand flow experience in computer-based instruction // Information and Management. 2014. Vol. 51 (7). P. 912-923.
Chen C.M., Wu C.H. Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance // Computers and Education. 2015. Vol. 80. P. 108-121.
Serrhini M. BCI sensor as ITS for controlling student attention in online experimentation // Online experimentation: emerging technologies and IOT // M.T. Restivo, A. Cardoso, A.M. Lopes (eds.). Barcelona : International Frequency Sensor Association (IFSA) Publishing, 2015. P. 83-102.
Lucchiari C., Folgieri R. The role of text color in learning: a Brain Computer Interface study // International Journal of Psychology. 2016. Vol. 51. P. 195-195.
Andujar M., Gilbert J.E. Let's learn!: enhancing user's engagement levels through passive brain-computer interfaces // Proceeding CHI '13 Extended Abstracts on Human Factors in Computing Systems. 2013. P. 703-708.
Ghergulescu I., Muntean C.H. ToTCompute: a novel EEG-based TimeOnTask Threshold computation mechanism for engagement modelling and monitoring // International Journal of Artificial Intelligence in Education. 2016. Vol. 26 (3). P. 821-854.
Lin F.-R., Kao Ch.-M. Mental effort detection using EEG data in E-learning contexts // Computers and Education. 2018. Vol. 122. P. 63-79.
Станкевич Л.А., Аманбаева С.С., Самочадин А.В. Оценка уровня умственной работоспособности учащихся на основе анализа сигналов ЭЭГ // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникации. Управление. 2018. Т. 11, № 4. С. 151-161. DOI: 10.18721/JCSTCS.11411.
Verkijika S.F., De Wet L. Using a brain-computer interface (BCI) in reducing math anxiety: Evidence from South Africa // Computers and Education. 2015. Vol. 81. P. 113-122.
Костромина С.Н., Прокофьева В.В., Гнедых Д.С., Королева М.Е. Психофизиологический мониторинг экзаменационного стресса у школьников // Психологические исследования. 2015. Т. 8, № 43. С. 7.
Moreno Cueva L.A., Pena Cortes C.A., Maestre Delgado M., Caicedo Villamizar S.G., Pardo Garda A. Registro de neurosenales con una interfaz cerebro-computador para esti-mar el nivel estres en un estudiante durante una clase // INGE CUC. 2017. Vol. 13, № 2. P. 95-101. DOI: 10.17981/ingecuc.13.2.2017.10.
Sorudeykin K.A. An educative brain-computer interface // IEEE East-West Design and Test International Symposium, Moscow, September, 2009. URL: https://arxiv.org/ftp/ arxiv/papers/1003/1003.2660.pdf
Tan D., Nijholt A. Brain-Computer Interfaces and Human-Computer Interaction // Brain-Computer Interfaces / D. Tan, A. Nijholt (eds.). London : Springer, 2010. P. 3-18. DOI: 10.1007/978-1-84996-272-8_1. (Human-Computer Interaction Series).
Grimes D., Tan D.S., Hudson S.E., Shenoy P., Rao R.P. Feasibility and pragmatics of classifying working memory load with an electroencephalograph // Proceeding of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in Computing Systems (Florence, Italy, 2008). New York : ACM, 2008. P. 835-844.
Tzovara A., Murray M.M., Bourdaud N., Chavarriaga R., Millan J.d.R., De Lucia M. The timing of exploratory decision-making revealed by single-trial topographic EEG analyses // Neuroimage. 2012. Vol. 60. P. 1959-1969. DOI: 10.1016/j.neuroimage.2012.01.136.
Ferrez P.W., del Millan R. Error-related EEG potentials generated during simulated brain-computer interaction // IEEE Trans Biomed Eng. 2008.Vol. 55 (3). P. 923-929.
Heidrich R., Branco M.A., Mossmann J.B., Schuh A., Jensen E. Development of BCI based softwares to assist People with mobility limitations in the school inclusion process // Proceedings of the 17th international ACM SIGACCESS conference on computers & accessibility. New York : ACM, 2015. P. 397-398.
Mehmood R.M., Lee H.J. Towards building a computer aided education system for special students using wearable sensor technologies // Sensors. 2017. Vol. 17 (2). P. 317. DOI: 10.3390/s17020317.
Нейроинтерфейсы для речевой коммуникации // Глобальные технологические тренды. Трендлеттер // Медицина и здравоохранение. 2016. № 2. URL: https://issek.hse.ru/ trendletter/news/174161494.html
Каплан А.Я., Кочетова А.Г., Шишкин С.Л., Басюл И.А., Ганин И.П., Васильев А.Н., Либуркина С.П. Экспериментально-теоретические основания и практические реализации технологии «Интерфейс мозг-компьютер» // Бюллетень сибирской медицины. 2013. № 12 (2). C. 21-29.
Wronkiewicz M., Larson E., Lee A.K.C. Leveraging anatomical information to improve transfer learning in brain-computer interfaces // Journal of neural engineering. 2015. Vol. 12 (4). DOI: 10.1088/1741-2560/12/4/046027. URL: https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC4527978/pdf/nihms710701.pdf
Nakanishi M., Wang Y.J., Jung T.P. Session-to-session transfer in detecting steady-state visual evoked potentials with individual training data // Foundations of Augmented Cognition: Neuroergonomics and Operational Neuroscience. AC 2016 / D. Schmorrow, C. Fidopiastis (eds.). Springer, Cham, 2016. DOI: 10.1007/978-3-319-39955-3_24. (Lecture Notes in Computer Science. Vol. 9743).
Волкова К.В., Дагаев Н.И., Киселев А.С., Касумов В.Р., Александров М.В., Осад-чий А.Е. Интерфейс «мозг-компьютер»: опыт построения, использования и возможные пути повышения рабочих характеристик // Журнал высшей нервной деятельности им. И.П. Павлова. 2017. Т. 67, № 4. С. 504-520.
Muhl C., Allison B., Nijholt A., Chanel G. A survey of affective brain computer interfaces: principles, state-of-the-art, and challenges // Brain-Computer Interfaces. 2014. Vol. 1 (2). P. 66-84.
Кирьянов Д.А., Каплан Д.А. Распознавание когнитивных потенциалов на целевые стимулы в интерфейсе «мозг-компьютер» на основе ансамбля классификаторов // Наука и инновации в медицине. 2016. № 3 (3). C. 28-32.
Boksem A.S., Meijman T.F., Lorist M.M. Effects of mental fatigue on attention: an ERP study // Cognitive Brain Research. 2005. Vol. 25 (1). P. 107-116.
Engell-Nielsen T., Glenstrup A.J., Hansen J.P. Eye gaze interaction: A new media - not just a fast mouse // Handbook of Human Factors / Ergonomics / K. Itoh, A. Komatsubara, S. Kuwano (eds.). Tokyo : AsakuraPublishing, 2003. P. 445-455.
Nilsson S., Gustafsson T., Carleberg P. Hands free interaction with virtual information in a real environment // Proceedings of COGAIN 2007, Leicester, UK, 2007. P. 53-57.
Sibert L.E., Jacob R.J.K. Evaluation of eye gaze interaction // Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York : ACM Press, 2000. P. 281-288.
Величковский Б.Б., Румянцев М.А., Морозов М.А. Новый подход к проблеме «Прикосновения Мидаса»: идентификация зрительных команд на основе выделения фокальных фиксаций // Вестник Московского университета. Сер. 14. Психология. 2013. № 3. C. 33-45.
Vilimek R., Zander T.O. BC(eye): Combining eye-gaze input with brain-computer interaction // Proceedings of the HCII 2009. Heidelberg : Springer, 2009. P. 593-602.
Пронина А.С., Григорян Р.К., Каплан А.Я. Движения глаз человека при наборе текста в интерфейсе мозг-компьютер на основе потенциала П300: эффект размера стимула и расстояния между стимулами // Вестник Московского университета. Сер. 14. Психология. 2018. № 4. C. 120-134.
Van Erp J.B.F., Brouwer A.-M. Touch-based Brain Computer Interfaces: State of the art // IEEE Haptics Symposium (HAPTICS), 23-26 Feb. 2014. P. 397-401. DOI: 10.1109/HAPTICS.2014.6775488.
Лукоянов М.В., Гордлеева С.Ю., Пимашкин А.С., Григорьев Н.А., Савосенков А.В., Мотайло А., Казанцев В.Б., Каплан А.Я. Эффективность интерфейсов мозг-компьютер на основе представления движений с тактильной и визуальной обратной связью // Физиология человека. 2018. № 44 (3). C. 53-61.
Hamada K., Mori H., Shinoda H., Rutkowski T.M. Airborne ultrasonic tactile display BCI // Brain-Computer Interface Research: a State-of-the-Art, Summary 4 / C. Guger, G. Mueller-Putz, B. Allison (eds.). Springer International Publishing, 2015. P. 57-65. (SpringerBriefs in Electrical and Computer Engineering).
White S.W., Richey J.A., Gracanin D., Coffman M., Elias R., LaConte S., Ollendick T.H. Psychosocial and computer-assisted intervention for college students with autism spectrum disorder: preliminary support for feasibility // Education and Training in Autism and Developmental Disabilities. 2016. Vol. 51 (3). P. 307-317.
Lim C.G., Lee T.S., Guan C.T., Fung D.S., Zhao Y., Teng S.S.W., Zhang H.K. Krish-nan R.R. A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder // PLoS ONE. 2012. Vol. 7 (10). Article 46692. DOI: 10.1371/journal.pone.0046692.
Ali A., Puthusserypady S. A 3D learning playground for potential attention training in ADHD: a Brain Computer Interface approach // 37th annual international conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 2015. P. 67-70.
Zammouri A., Moussa A.A., Mebrouk Y. Brain-computer interface for workload estimation: Assessment of mental efforts in learning processes // Expert Systems with Applications. 2018. Vol. 112. P. 138-147.
Endsley M.R. Toward a theory of situation awareness in dynamic systems // Human Factors. 1995. Vol. 37. P. 32-64. DOI: 10.1518/001872095779049543.
Berka C., Levendowski D.J., Davis G., Whitmoyer M., Hale K., Fuchs S. Objective measures of situational awareness using neurophysiology technology // Augmented Cognition: Past, Present and Future. 2006. P. 145-154.
Yeo L.G., Sun H., Liu Y., Trapsilawati F., Sourina O., Chen C.-H., Muller-Wittig W., Ang W.T. Mobile EEG-based situation awareness recognition for air traffic controllers // IEEE International Conference on Systems, Man, and Cybernetics (SMC) (Banff, AB). 2017. P. 3030-3035.
Kostromina S.N., Mkrtychian N.A., Kurmakaeva D.M., Gnedykh D.S. The interrelationship between cognitive control and academic success of first-year students: an interdisciplinary study // Psychology in Russia: State of the Art. 2017. Vol. 10 (4). P. 60-75.
Carreiras M., Monahan P.J., Lizarazu M., Dunabeitia J.A., Molinaro N. Numbers are not like words: Different pathways for literacy and numeracy // NeuroImage. 2015. Vol. 118. P. 79-89.
Zakaria E., Zain N.M., Ahmad N.A., Erlina A. Mathematics anxiety and achievement among secondary school students // American Journal of Applied Sciences. 2012. Vol. 9 (11). P. 1828-1832.
Kostromina S., Gnedykh D., Molodtsova G.A. Psycho-Pedagogical Model for Evaluating Effectiveness of Students' Learning on the Basis of Electronic Visual Rows // Optimizing Human-Computer Interaction With Emerging Technologies. Hershey, PA: IGI Global, 2017. P. 183-209. DOI: 10.4018/978-1-5225-2616-2.ch007.