Possibilities and Limitations of Extrafoveal Perception: an Analytical Review
The article presents an analytical review of studies in the field of extrafoveal perception. The region of extrafoveal vision combines the parafovea and periphery of the retina, so extra-foveal perception is the perception of objects which projections are outside of the fovea. For a long time, it has been believed that extrafoveal vision, in contrast to foveal, has a lower acuity and resolution and is used mainly for preliminary analysis of the visual field and selection of relevant objects for their more thorough analysis in fovea. However, the literature shows that extrafoveal perception is much more interesting and autonomous process as it has been previously considered. The paper analyzes a number of works showing that it is possible to identify both specific features of simple stimuli and rather complex objects, such as faces or whole scenes, up to the possibility of their semantic analysis, even in extrafoveal vision. The review considers the history of studies on extrafoveal perception, from the earliest works (Hueck, 1840; Aubert, Foerster, 1857) to the most recent ones of the last 5 years. These works have analyzed the main factors influencing the effectiveness of extrafoveal vision, for example, cortical magnification factor, which reflects differences in the number of neurons in the visual cortex responsible for processing stimuli depending on the region of the retina: the closer the object is to the fovea, the more neurons are involved in its processing, and vice versa. Other factors determining the efficacy of extrafoveal perception include the following: crowding effect when the target object on the periphery surrounded by distractors is identified worse than a separately located stimulus; specific characteristics of a target and distractors (for example, contexts evoking pop-out effect). Crowding effect is also related to the question of correlating two forms of processing extrafoveal information: preattentive processing (parallel “bottom up” processing) and covert attention (moving the point of deeper analysis along the visual field without eye movements) which can be controlled up to some degree. The other factors influencing the effectiveness of extrafoveal perception concern the context of a task (categorical search in laboratory conditions, analysis of the real world scenes, reactions to extrafoveal stimuli during definite activity) and individual differences. Additionally, we have analyzed the works on the possibilities of training extrafoveal perception, which can affect both higher-level processes, for example, identification of the context of complex scenes, perception of emotions and categorical visual search, and lower-level visual functions, such as identification of spatial orientation, contrast perception and reduction of crowding effect.
Keywords
visual perception,
extrafoveal perception,
scene recognition,
face recognition,
categorical search,
attention,
crowding effect,
conception of cortical magnification,
training of extrafoveal perceptionAuthors
Dreneva Anna A. | Lomonosov Moscow State University; The Russian Presidential Academy of National Economy and Public Administration | anna.dreneva@msupsy.ru |
Krichevets Anatoly N. | Lomonosov Moscow State University | ankrich@mail.ru |
Всего: 2
References
Rosenholtz R. Capabilities and Limitations of Peripheral Vision // Annual Review of Vision Science. 2016. Vol. 2 (1). P. 437-457. DOI: 10.1146/annurev-vision-082114-035733
Iwasaki M., Inomata H. Relation between Superficial Capillaries and Foveal Structures in the Human Retina // Investigative Ophthalmology & Visual Science. 1986. Vol. 27, is. 12. P. 1698-1705.
Kolb H., Fernandez E., Nelson R. Webvision: The Organization of the Retina and Visual System. John Moran Eye Center, University of Utah, 2011.
Strasburger H., Rentschler I., Juttner M. Peripheral Vision and Pattern Recognition: A review // Journal of Vision. 2011. Vol. 11, is. 5. P. 13-13. DOI: 10.1167/11.5.13
Krantz J.H. The stimulus and anatomy of the visual system // Krantz J.H. Experiencing Sensation and Perception. Sage, 2012. URL: https://psych.hanover.edu/javatest/media/Chapter03.html
Poletti M., Rucci M., Carrasco M. Selective attention within the foveola // Nature Neuro science. 2017. Vol. 20, is. 10. P. 1413. DOI: 10.1038/nn.4622
Korte W. Uber die Gestaltauffassung im indirekten Sehen // Zeitschrift fur Psychologie. 1923. Vol. 93. P. 17-82.
Loschky L.C. et al. The importance of information localization in scene gist recognition // Journal of Experimental Psychology: Human Perception and Performance. 2007. Vol. 33, is. 6. P. 1431. DOI: 10.1037/0096-1523.33.6.1431
Popescu M.L. et al. Age-related eye disease and mobility limitations in older adults // Investigative Ophthalmology & Visual Science. 2011. Vol. 52, is. 10. P. 7168-7174. DOI: 10.1167/iovs.11 -7564
Hueck A. Uber die Grenzen des Sehvermogens // Mullers Archiv fur Anatomic, Physiologie und Wissenschaftliche Medizin. 1840. Vol. 1840. P. 82-97.
Aubert H.R., Foerster C.F.R. Beitrage zur Kenntnisse der indirecten Sehens // Graefes Archiv fur Ophthalmologie. 1857. Vol. 3. P. 1-37.
Wertheim T. Uber die indirekte Sehscharfe // Zeitschrift fur Psychologie. 1894. Vol. 7. P. 172-187.
Polyak S.L. The Main Afferent Fiber Systems of the Cerebral Cortex in Primates: An Investigation of the Central Portions of the Somato-sensory, Auditory and Visual Paths of the Cerebral Cortex. University of California Press, 1932.
Talbot S.A., Marshall W.H. Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination // American Journal of Ophthalmology. 1941. Vol. 24, is. 11. P. 1255-1264. DOI: 10.1016/S0002-9394(41)91363-6
Nakayama K., Mackeben M. Sustained and Transient Components of Focal Visual Attention // Vision Research. 1989. Vol. 29, is. 11. P. 1631-1647. DOI: 10.1016/0042-6989(89)90144-2
Mackeben M. Sustained focal attention and peripheral letter recognition // Spatial Vision. 1999. Vol. 12, is. 1. P. 51-72. DOI: 10.1163/156856899x00030
Carrasco M., Williams P.E., Yeshurun Y. Covert attention increases spatial resolution with or without masks: Support for signal enhancement // Journal of Vision. 2002. Vol. 2, is. 6. P. 467-479. DOI: 10.1167/2.6.4
Гиппенрейтер Ю.Б. Движения человеческого глаза. М : Изд-во Моск. ун-та, 1978. 256 с.
Вергилес Н.Ю. Исследование деятельности и функциональное моделирование сенсорного звена зрительной системы : автореф. дис.. канд. пед. наук (по психологии). М., 1967. 27 с.
Ярбус А.Л. Роль движений глаз в процессе зрения. М. : Наука, 1965. 161 с.
Rovamo J., Virsu V. An estimation and application of the human cortical magnification factor // Experimental Brain Research. 1979. Vol. 37, is. 3. P. 495-510. DOI: 10.1007/BF00236819
Harvey B.M., Dumoulin S.O. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture // Journal of Neuroscience. 2011. Vol. 31, is. 38. P. 13604-13612. DOI: 10.1523/JNEUROSCI.2572-11.2011
Daniel P.M., Whitteridge D. The representation of the visual field on the cerebral cortex in monkeys // The Journal of Physiology. 1961. Vol. 159, is. 2. P. 203-221. DOI: 10.1113/jphysiol.1961.sp006803
Watson A.B. Estimation of local spatial scale // JOSA A. 1987. Vol. 4, is. 8. P. 15791582. DOI: 10.1364/JOSAA.4.001579
Rovamo J., Virsu V., Nasanen R. Cortical magnification factor predicts the photopic contrast sensitivity of peripheral vision // Nature. 1978. Vol. 271, is. 5640. P. 54-56. DOI: 10.1038/271054a0
Westheimer G. The spatial grain of the perifoveal visual field // Vision Research. 1982. Vol. 22, is. 1. P. 157-162. DOI: 10.1016/0042-6989(82)90177-8
Strasburger H., Rentschler I., Harvey Jr L. O. Cortical magnification theory fails to predict visual recognition // European Journal of Neuroscience. 1994. Vol. 6, is. 10. P. 15831588. DOI: 10.1111/j.1460-9568.1994.tb00548.x
Virsu V., Nasanen R., Osmoviita K. Cortical magnification and peripheral vision // JOSA A. 1987. Vol. 4, is. 8. P. 1568-1578. DOI: 10.1364/josaa.4.001568
Rovamo J., Raninen A. Critical flicker frequency and M-scaling of stimulus size and retinal illuminance // Vision Research. 1984. Vol. 24, is. 10. P. 1127-1131. DOI: 10.1016/0042-6989(84)90166-4
Makela P. et al. Identification of facial images in peripheral vision // Vision Research. 2001. Vol. 41, is. 5. P. 599-610. DOI: 10.1016/S0042-6989(00)00259-5
Lettvin J.Y. On seeing sidelong // The Sciences. 1976. Vol. 16, is. 4. P. 10-20. DOI: 10.1002/j.2326-1951.1976.tb01231.x
Bouma H. Interaction effects in parafoveal letter recognition // Nature. 1970. Vol. 226, is. 5241. P. 177-178. DOI: 10.1038/226177a0
Pelli D.G., Palomares M., Majaj N.J. Crowding is unlike ordinary masking: Distinguishing feature integration from detection // Journal of Vision. 2004. Vol. 4, is. 12. P. 1136-1169. DOI: 10.1167/4.12.12
Levi D.M. Crowding - An essential bottleneck for object recognition: A mini-review // Vision Research. 2008. Vol. 48, is. 5. P. 635-654. DOI: 10.1016/j.visres.2007.12.009
Ehlers H.V. The movements of the eyes during reading // Acta Ophthalmologica. 1936. Vol. 14, is. 1-2. P. 56-63. DOI: 10.1111/j.1755-3768.1936.tb07306.x
Averbach E., Coriell A.S. Short-term memory in vision // The Bell System Technical Journal. 1961. Vol. 40, is. 1. P. 309-328. DOI: 10.1002/j.1538-7305.1961.tb03987.x
Shaw P. Processing of tachistoscopic displays with controlled order of characters and spaces // Perception & Psychophysics. 1969. Vol. 6, is. 5. P. 257-266. DOI: 10.3758/BF03210094
Toet A., Levi D. M. The two-dimensional shape of spatial interaction zones in the para-fovea // Vision Research. 1992. Vol. 32, is. 7. P. 1349-1357. DOI: 10.1016/0042-6989(92)90227-A
Atkinson J. et al. Visual crowding in young children // Detection and Measurement of Visual Impairment in Pre-Verbal Children. Dordrecht : Springer, 1986. P. 201-213.
Wolford G., Chambers L. Lateral masking as a function of spacing // Perception & Psychophysics. 1983. Vol. 33, is. 2. P. 129-138. DOI: 10.3758/bf03202830
Strasburger H., Harvey L.O., Rentschler I. Contrast thresholds for identification of numeric characters in direct and eccentric view // Perception & Psychophysics. 1991. Vol. 49, is. 6. P. 495-508. DOI: 10.3758/bf03212183
Wolfe J.M., Utochkin I.S. What is a preattentive feature? // Current Opinion in Psychology. 2019. Vol. 29. P. 19-26. DOI: 10.1016/j.copsyc.2018.11.005
Treisman A., Gormican S. Feature analysis in early vision: evidence from search asymmetries // Psychological Review. 1988. Vol. 95, is. 1. P. 15-48. DOI: 10.1037/0033-295x.95.1.15
Posner M.I. Orienting of attention: Then and now // Quarterly Journal of Experimental Psychology. 2016. Vol. 69, is. 10. P. 1864-1875. DOI: 10.1080/17470218.2014.937446
Julesz B. Textons, the elements of texture perception, and their interactions // Nature. 1981. Vol. 290, is. 5802. P. 91-97. DOI: 10.1038/290091a0
Kehrer L. Perceptual segregation and retinal position // Spatial Vision. 1987. Vol. 2, is. 4. P. 247-261. DOI: 10.1163/156856887x00204
Scialfa C.T., Joffe K.M. Texture segmentation as a function of eccentricity, spatial frequency and target size // Spatial Vision. 1995. Vol. 9, is. 3. P. 325-342. DOI: 10.1163/156856895x00034
Yeshurun Y., Carrasco M. Attention improves or impairs visual performance by enhancing spatial resolution // Nature. 1998. Vol. 396, is. 6706. P. 72-75. DOI: 10.1038/23936
Yeshurun Y., Montagna B., Carrasco M. On the flexibility of sustained attention and its effects on a texture segmentation task // Vision Research. 2008. Vol. 48, is. 1. P. 80-95. DOI: 10.1016/j.visres.2007.10.015
Fei-Fei L. et al. What do we perceive in a glance of a real-world scene? // Journal of Vision. 2007. Vol. 7, is. 1. P. 1-29. DOI: 10.1167/7.1.10
Velisavljevic L., Elder J.H. Visual short-term memory for natural scenes: Effects of eccentricity // Journal of Vision. 2008. Vol. 8, is. 4. P. 1-17. DOI: 10.1167/8.4.28
Larson A.M., Loschky L.C. The contributions of central versus peripheral vision to scene gist recognition // Journal of Vision. 2009. Vol. 9, is. 10. P. 1-16. DOI: 10.1167/9.10.6
Thorpe S.J. et al. Detection of animals in natural images using far peripheral vision // European Journal of Neuroscience. 2001. Vol. 14, is. 5. P. 869-876. DOI: 10.1046/j.0953-816x.2001.01717.x
Jonides J., Gleitman H. A conceptual category effect in visual search: O as letter or as digit // Perception & Psychophysics. 1972. Vol. 12, is. 6. P. 457-460. DOI: 10.3758/BF03210934
Dahan D., Tanenhaus M.K. Looking at the rope when looking for the snake: conceptually mediated eye movements during spoken-word recognition // Psychonomic Bulletin & Review. 2005. Vol. 12, is. 3. P. 453-459. DOI: 10.3758/bf03193787
Schmidt J., Zelinsky G.J. Short article: Search guidance is proportional to the categorical specificity of a target cue // Quarterly Journal of Experimental Psychology. 2009. Vol. 62, is. 10. P. 1904-1914. DOI: 10.1080/17470210902853530
Greene M.R., Fei-Fei L. Visual categorization is automatic and obligatory: evidence from Stroop-like paradigm // Journal of Vision. 2014. Vol. 14, is. 1. DOI: 10.1167/14.1.14. URL: https://jov.arvojournals.org/article.aspx?articleid=2193927
Cimminella F., Della Sala S., Coco M.I. Extra-foveal Processing of Object Semantics Guides Early Overt Attention During Visual Search // Attention, Perception, & Psychophysics. 2020. Vol. 82, is. 2. P. 655-670. DOI: 10.3758/s13414-019-01906-1
Кричевец А.Н. и др. Возможности экстрафовеального восприятия геометрических фигур // Вопросы психологии. 2017. № 6. С. 117-128.
Дренёва А.А., Кричевец А.Н., Чумаченко Д.В., Шварц А.Ю. Экстрафовеальный анализ категориально заданных трехмерных фигур // Сибирский психологический журнал. 2019. № 72. С. 68-92. DOI: 10.17223/17267080/72/4
Martelli M., Majaj N.J., Pelli D.G. Are faces processed like words? A diagnostic test for recognition by parts // Journal of Vision. 2005. Vol. 5, is. 1. P. 58-70. DOI: 10.1167/5.1.6
Ungerleider L.G., Haxby J.V. ‘What’and ‘where’in the human brain // Current Opinion in Neurobiology. 1994. Vol. 4, is. 2. P. 157-165. DOI: 10.1016/0959-4388(94)90066-3
Calder A.J. et al. Configural information in facial expression perception // Journal of Experimental Psychology: Human perception and performance. 2000. Vol. 26, is. 2. P. 527-551. DOI: 10.1037/0096-1523.26.2.527
Барабанщиков В.А., Жегалло А.В. Распознавание экспрессий лица в ближней периферии зрительного поля // Экспериментальная психология. 2013. № 2. С. 59-85.
Goren D., Wilson H.R. Quantifying facial expression recognition across viewing conditions // Vision Research. 2006. Vol. 46, is. 8-9. P. 1253-1262. DOI: 10.1016/j.visres.2005.10.028
Calvo M.G., Nummenmaa L., Avero P. Recognition advantage of happy faces in extra-foveal vision: Featural and affective processing // Visual Cognition. 2010. Vol. 18, is. 9. P. 1274-1297. DOI: 10.1080/13506285.2010.481867
Calvo M.G., Rodriguez-Chinea S., Fernandez-Martin A. Lateralized discrimination of emotional scenes in peripheral vision // Experimental Brain Research. 2015. Vol. 233, is. 3. P. 997-1006. DOI: 10.1007/s00221-014-4174-8
Beard B.L., Levi D.M., Reich L.N. Perceptual learning in parafoveal vision // Vision Research. 1995. Vol. 35, is. 12. P. 1679-1690. DOI: 10.1016/0042-6989(94)00267-p
Westheimer G. Is peripheral visual acuity susceptible to perceptual learning in the adult? // Vision Research. 2001. Vol. 41, is. 1. P. 47-52. DOI: 10.1016/S0042-6989(00)00245-5
Lu Z.L., Dosher B.A. Perceptual learning retunes the perceptual template in foveal orientation identification // Journal of Vision. 2004. Vol. 4, is. 1. P. 44-56. DOI: 10.1167/4.1.5
Xiao L.Q. et al. Complete transfer of perceptual learning across retinal locations enabled by double training // Current Biology. 2008. Vol. 18, is. 24. P. 1922-1926. DOI: 10.1016/j.cub.2008.10.030
Zhang T. et al. Decoupling location specificity from perceptual learning of orientation discrimination // Vision Research. 2010. Vol. 50, is. 4. P. 368-374. DOI: 10.1016/j.visres.2009.08.024
Sagi D. Perceptual learning in vision research // Vision Research. 2011. Vol. 51, is. 13. P. 1552-1566. DOI: 10.1016/j.visres.2010.10.019
Chung S.T.L., Legge G.E., Cheung S. Letter-recognition and reading speed in peripheral vision benefit from perceptual learning // Vision research. 2004. Vol. 44, is. 7. P. 695709. DOI: 10.1016/j.visres.2003.09.028
Chung S.T.L. Learning to identify crowded letters: does it improve reading speed? // Vision Research. 2007. Vol. 47, is. 25. P. 3150-3159. DOI: 10.1016/j.visres.2007.08.017
Yu D. et al. Training peripheral vision to read: Boosting the speed of letter processing // Vision Research. 2018. Vol. 152. P. 51-60. DOI: 10.1016/j.visres.2017.06.005
Sun G.J., Chung S.T.L., Tjan B.S. Ideal observer analysis of crowding and the reduction of crowding through learning // Journal of Vision. 2010. Vol. 10, is. 5. P. 16. DOI: 10.1167/10.5.16
Juttner M., Rentschler I. Scale-invariant superiority of foveal vision in perceptual categorization // European Journal of Neuroscience. 2000. Vol. 12, is. 1. P. 353-359. DOI: 10.1046/j.1460-9568.2000.00907.x
Juttner M., Rentschler I. Category learning induces position invariance of pattern recognition across the visual field // Proceedings of the Royal Society B: Biological Sciences. 2008. Vol. 275, is. 1633. P. 403-410. DOI: 10.1098/rspb.2007.1492
Biederman I., Cooper E. E. Size invariance in visual object priming // Journal of Experimental Psychology - Human Perception and Performance. 1992. Vol. 18, is. 1. P. 121133. DOI: 10.1037/0096-1523.18.1.121