Psychological and Psychophysiological Mechanisms of Motor Skill Training | Sibirskiy Psikhologicheskiy Zhurnal – Siberian Journal of Psychology. 2021. № 82. DOI: 10.17223/17267080/82/4

Psychological and Psychophysiological Mechanisms of Motor Skill Training

The present review focuses on psychological and psychophysiological research in the study of motor training and the relationship of this process to the mirror neuron system underlying implicit training, or training by analogy. Our review shows that the most effective strategy for training a motor skill is a combination of physical repetition of the movement and observation of it, with the visual observation of the movement being as related as possible to the actual movement - the same environment, the movement should be congruent, the person performing the action should train the skill rather than perform it professionally. This strategy will be more effective in case of absence of any motor system impairment. In sports practice, the use of implicit training based on analogy (metaphor) for motor skill acquisition will be more effective and appropriate compared to classical implicit methods, especially in cases of motor system disorders, as well as at the older preschool and younger school ages, since the brain structures, critical for explicit training (training by instruction), finally mature by the age of 9-10. The system of mirror neurons, which includes, among others, the ventral premotor area and Broca area, is important in motor training, performing such functions as: recognition of movements, including complex polymodal actions performed by another person; it is the basis of mental representations of movements: motor representations, etc. In addition, it is involved in the recognition of action-related sentences. The mirror neuron system integrates observed actions of other people with the personal motor repertoire. The mirror neuron system underlies anticipation: the more professional are the athletes, the higher is the specialization of their mirror neuron system. The system of mirror neurons is the basis of motor training in childhood. An adult person is characterized by a wide repertoire of movements (motor archive), because during his life he gets mastered many movements and actions that are repeated many times and can be later included in mastering more complex actions. A child does not have such a wide motor repertoire; he has to master many movements from the beginning. The system of mirror neurons makes it possible to "mirror" movements similar to those in the human motor repertoire. As a child grows and develops, an archive of different motor programs and formed motor skills is accumulated. This means that children can gradually repeat, or "mirror", increasingly complex movements. Thus, the system of mirror neurons facilitates the process of purposeful movement formation in children of preschool and primary school age.

Download file
Counter downloads: 82

Keywords

motor skills, motor training, motor system, mirror neurons, implicit training, explicit training

Authors

NameOrganizationE-mail
Polikanova Irina S.Lomonosov Moscow State University; HSE Universityirinapolikanova@mail.ru
Leonov Sergey V.Lomonosov Moscow State Universitysvleonov@gmail.com
Semenov Yury I.Scientific and Educational Center of the State institution "Academy of Sciences of the Republic of Sakha (Yakutia)yra_semen1109@mail.ru
Yakushina Anastasia A.Lomonosov Moscow State Universityanastasiushka96@yandex.ru
Klimenko Victor A.Lomonosov Moscow State Universityklimenko@siberia.design
Всего: 5

References

Kal E., Prosee R., Winters M., Van Der Kamp J. Does implicit motor learning lead to greater automatization of motor skills compared to explicit motor learning? A systematic review // PloS ONE. 2018. Vol. 13 (9). e0203591. DOI: 10.1371/journal.pone.0203591
Maxwell J.P., Capio C.M., Masters R.S.Interaction between motor ability and skill learning in children: Application of implicit and explicit approaches // European Journal of Sport Science. 2017.Vol. 17 (4). P. 407-416. DOI: 10.1080/17461391.2016.1268211
Liao C.M., Masters, R.S. Analogy learning: A means to implicit motor learning // Journal of Sports Sciences. 2001. Vol. 19 (5). P. 307-319. DOI: 10.1080/02640410152006081
Masters R.S. Knowledge, knerves and know-how: The role of explicit versus implicit knowledge in the breakdown of a complex motor skill under pressure // British Journal of Psychology. 1992. Vol. 83 (3). P. 343-358. DOI: 10.1111/j.2044-8295.1992.tb02446.x
Poolton J.M., Masters R.S., Maxwell J.P. The influence of analogy learning on decision making in table tennis: Evidence from behavioural data // Psychology of Sport and Exercise. 2006. Vol. 7 (6). P. 677-688. DOI: 10.1016/j.psychsport.2006.03.005
Masters R.S. Theoretical aspects of implicit learning in sport // International Journal of Sport Psychology. 2000. Vol. 31 (4). P. 530-541.
Buszard T., Farrow D., Verswijveren S.J. et al. Working memory capacity limits motor learning when implementing multiple instructions // Frontiers in Psychology. 2017. Vol. 8. Art. 1350. DOI: 10.3389/fpsyg.2017.01350
Maxwell J.P., Masters R.S.W., Kerr E., Weedon E. The implicit benefit of learning without errors // The Quarterly Journal of Experimental Psychology. Section A. 2001. Vol. 54 (4). P. 1049-1068. DOI: 10.1080/713756014
Maxwell J.P., Masters R.S., Eves F.F. From novice to no know-how: A longitudinal study of implicit motor learning // Journal of Sports Sciences. 2000. Vol. 18 (2). P. 111-120. DOI: 10.1080/026404100365180
Steenbergen B., Van Der Kamp J., Verneau M., Jongbloed-Pereboom M., Masters R.S. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics // Disability and Rehabilitation. 2010. Vol. 32 (18). P. 1509-1516. DOI: 10.3109/09638288.2010.497035
Boyd L.A., Winstein, C.J. Providing explicit information disrupts implicit motor learning after basal ganglia stroke // Learning & Memory. 2004. Vol. 11 (4). P. 388-396. DOI: 10.1101/lm.80104
Boyd L.A., Winstein C.J. Cerebellar stroke impairs temporal but not spatial accuracy during implicit motor learning // Neurorehabilitation and neural repair. 2004. Vol. 18 (3). P. 134-143. DOI:10.1177/0888439004269072
Wessel M.J., Zimerman M., Timmermann J.E., Heise K.F., Gerloff C., Hummel F.C. Enhancing consolidation of a new temporal motor skill by cerebellar noninvasive stimulation // Cerebral Cortex. 2016. Vol. 26 (4). P. 1660-1667. DOI: 10.1093/cercor/bhu335
King B.R., Saucier P., Albouy G. et al. Cerebral activation during initial motor learning forecasts subsequent sleep-facilitated memory consolidation in older adults // Cerebral Cortex. 2017. Vol. 27 (2). P. 1588-1601. DOI: 10.1093/cercor/bhv347
Kumar N., Manning T.F., Ostry D.J. Somatosensory cortex participates in the consolidation of human motor memory // PLoS Biology. 2019. Vol. 17 (10). e3000469. DOI: 10.1371/journal.pbio.3000469
Yokoi A., Arbuckle S.A., Diedrichsen J. The role of human primary motor cortex in the production of skilled finger sequences // Journal of Neuroscience. 2018. Vol. 38 (6). P. 1430-1442. DOI: 10.1523/JNEUROSCI.2798-17.2017
Spampinato D., Celnik P. Temporal dynamics of cerebellar and motor cortex physiological processes during motor skill learning // Scientific reports. 2017. Vol. 7 (1). P. 1-12. DOI: 10.1038/srep40715
Thomas R., Johnsen L.K., Geertsen S.S., Christiansen L., Ritz C., Roig M., Lundbye-Jensen J. Acute exercise and motor memory consolidation: the role of exercise intensity // PloS ONE. 2016. Vol. 11 (7). e0159589. DOI: 10.1371/journal.pone.0159589
Karni A., Sagi D. The time course of learning a visual skill // Nature. 1993. Vol. 365. P. 250-252. DOI: 10.1038/365250a0
Hardwick R.M., Caspers S., Eickhoff S.B., Swinnen S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution // Neuroscience & Biobehavioral Reviews. 2018. Vol. 94. P. 31-44. DOI: 10.1016/j.neubiorev.2018.08.003
Nitsche M.A., Schauenburg A., Lang N., Liebetanz D., Exner C., Paulus W., Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human // Journal of Cognitive Neuroscience. 2003. Vol. 15 (4). P. 619-626. DOI: 10.1162/089892903321662994
Doyon J., Owen A.M., Petrides M., Sziklas V., Evans A.C. Functional anatomy of visuo-motor skill learning in human subjects examined with positron emission tomography // European Journal of Neuroscience. 1996. Vol. 8. P. 637-648. DOI: 10.1111/j.1460-9568.1996.tb01249.x
Doyon J., Song A.W., Karni A., Lalonde F., Adams M.M., Ungerleider L.G. Experiencedependent changes in cerebellar contributions to motor sequence learning // Proceedings National Academic Science USA. 2002. Vol. 99. P. 1017-1022. DOI: 10.1073/pnas.022615199
Shimizu R.E., Wu A.D., Knowlton B.J. Cerebellar activation during motor sequence learning is associated with subsequent transfer to new sequences // Behavioral Neuroscience. 2016. Vol. 130 (6). P. 572-584. DOI: 10.1037/bne0000164
Immink M.A., Verwey W.B., Wright D.L. The Neural Basis of Cognitive Efficiency in Motor Skill Performance from Early Learning to Automatic Stages // Neuroergonomics. Springer, Cham., 2020. P. 221-249. DOI: 10.1007/978-3-030-34784-0_12
Grafton S.T., Woods R.P., Mike T. Functional imaging of procedural motor learning: relating cerebral blood flow with individual subject performance // Human Brain Mapping. 1994. Vol. 1. P. 221-234. DOI: 10.1002/hbm.460010307
Marchal-Crespo L., Michels L., Jaeger L., Lopez-Oloriz J., Riener R. Effect of error augmentation on brain activation and motor learning of a complex locomotor task // Frontiers in neuroscience. 2017. Vol. 11. Art. 526. DOI: 10.3389/fnins.2017.00526
Toni I., Krams M., Turner R., Passingham R.E. The time course of changes during motor sequence learning: a whole-brain fMRI study // Neuroimage. 1998. Vol. 8. P. 50-61. DOI: 10.1006/nimg.1998.0349
Chalavi S., Adab H.Z., Pauwels L. et al. Anatomy of subcortical structures predicts age-related differences in skill acquisition // Cerebral Cortex. 2018. Vol. 28 (2). P. 459-473. DOI: 10.1093/cercor/bhw382
Ungerleider L.G., Doyon J., Karni A. Imaging brain plasticity during motor skill learning // Neurobiology of Learning and Memory. 2002. Vol. 78 (3). P. 553-564. DOI: 10.1006/nlme.2002.4091
Lehericy S., Benali H., Van de Moortele P.F., Pelegrini-Issac M., Waechter T., Ugurbil K., Doyon, J. Distinct basal ganglia territories are engaged in early and advanced motor sequence learning // Proceedings of the National Academy of Sciences. 2005. Vol. 102 (35). P. 12566-12571. DOI: 10.1073/pnas.0502762102
Doyon J., Penhune V., Ungerleider L.G. Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning // Neuropsychologia. 2003. Vol. 41 (3). P. 252-262. DOI: 10.1016/s0028-3932(02)00158-6
Krebs H.I., Brashers-Krug T., Rauch S.L., Savage C.R., Hogan N., Rubin R.H. et al. Robot-aided functional imaging: application to a motor learning study // Human Brain Mapping. 1998. Vol. 6. P. 59-72. DOI: 10.1002/(SICI)1097-0193(1998)6:1<59::AID-HBM5>3.0.CO;2-K
Penhune V.B., Doyon J. Dynamic cortical and subcortical networks in learning and delayed recall of timed motor sequences // Journal of Neuroscience. 2002. Vol. 22. P. 1397-1406. DOI: 10.1523/JNEUROSCI.22-04-01397.2002
Риццолатти Д., Синигалья К. Зеркала в мозге: о механизмах совместного действия и сопереживания / пер. с англ. О.А. Кураковой, М.В. Фаликман. М. : Языки славянских культур, 2012. 208 с.
Pellegrino G., Fadiga L., Fogassi L., Gallese V., Rizzolatti G. Understanding motor events: a neurophysiological study // Experimental Brain Research. 1992. Vol. 91. P. 176-180. DOI: 10.1007/BF00230027
Gallese V., Fadiga L., Fogassi L., Rizzolatti G. Action recognition in the premotor cortex // Brain. 1996. Vol. 119. P. 593-609. DOI: 10.1093/brain/119.2.593
Rizzolatti G., Fogassi L., Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action // Nature Neuroscience Reviews. 2001. Vol. 2. P. 661670. DOI: 10.1038/35090060
Косоногов В. Зеркальные нейроны : краткий научный обзор. Ростов н/Д, 2009. 24 с.
Rizzolatti G., Sinigaglia C. The mirror mechanism: a basic principle of brain function // Nature Reviews Neuroscience. 2016. Vol. 17 (12). P. 757-765. DOI: 10.1038/nrn.2016.135
Hari R., Forss N., Avikainen S., Kirveskari E., Salenius S., Rizzolatti G. Activation of human primary motor cortex during action observation: a neuromagnetic study // Proceedings National Academic Science USA. USA. 1998. Vol. 95. P. 15061-15065. DOI: 10.1073/pnas.95.25.15061
Prilutsky B.I., Zatsiorsky V.M. Optimization-based models of muscle coordination // Exercise and sport sciences reviews. 2002. Vol. 30 (1). P. 32-38. DOI: 10.1097/00003677200201000-00007
Meltzoff A.N. Towards a developmental cognitive science // Annals New York Acad. Sci. 1990. Vol. 608. P. 1-37. DOI: 10.1111/j.1749-6632.1990.tb48889.x
Thanikkal S.J. Mirror Neurons and Imitation Learning in Early Motor Development // Asian J Appl Res. 2019. Vol. 5 (1). P. 37-42. DOI: 10.20468/ajar/104654
Hanakawa T. Organizing motor imageries // Neuroscience Research. 2016. Vol. 104. P. 56-63. DOI: 10.1016/j.neures.2015.11.003
Binkofski F., Amunts K., Stephan K.M., Posse S., Schormann T., Freund H.-J., Zilles K., Seitz R.J. Broca's region subserves imagery of motion: a combined cytoarchitectonic and fMRI study // Human Brain Mapping. 2000. Vol. 11. P. 273-285. DOI: 10.1002/1097-0193(200012)11:4<273::aid-hbm40>3.0.co;2-0
Bonda E., Petrides M., Frey S., Evans A. Neural correlates of mental transformations of the body-in-space // Proceedings National Academic Science USA. 1995. Vol. 92. P. 11180-11184. DOI: 10.1073/pnas.92.24.11180
Parsons L.M., Fox P.T., Hunter Downs J., Glass T., Hirsch T.B., Martin C.C., Jerabek P.A., Lancaster J.L. Use of implicit motor imagery for visual shape discrimination as revealed by PET // Nature. 1995. Vol. 375. P. 54-58. DOI: 10.1038/375054a0
Grafton S.T., Arbib M.A., Fadiga L., Rizzolatti G. Localization of grasp representations in humans by positron emission tomography // Exp. Brain Res. 1996. Vol. 112. P. 103-111. DOI: 10.1007/BF00227183
Krams M., Rushworth M.F.S., Deiber M.P., Frackowiak R.S.J., Passingham R.E. The preparation, execution and suppression of copied movements in the human brain // Exp. Brain Res. 1998. Vol. 120. P. 386-398. DOI: 10.1007/s002210050412
Eaves D.L., Riach M., Holmes P.S., Wright D.J. Motor imagery during action observation: a brief review of evidence, theory and future research opportunities // Frontiers in Neuroscience. 2016. Vol. 10. Art. 514. DOI: 10.3389/fnins.2016.00514
Tettamanti M., Buccino G., Saccuman M.C., Gallese V., Danna M., Scifo P., Fazio F., Rizzolatti G., Cappa S.F., Perani D. Listening to action-related sentences activates frontoparietal motor circuits //j. Cogn. Neurosci. 2005. Vol. 17. P. 273-281. DOI: 10.1162/0898929053124965
Buccino G., Riggio L., Melli G., Binkofski F., Gallese V., Rizzolatti G. Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study // Cognitive Brain Research. 2005. Vol. 24 (3). P. 355-363. DOI: 10.1162/jocn.2006.18.10.1607
Gallese V., Lakoff G. The brain's concepts: the role of the sensorymotor system in reason and language // Cognit. Neuropsychol. 2005. Vol. 22. P. 455-479. DOI: 10.1080/02643290442000310
Gallese V. La molteplice natura delle relazioni interpersonali: la ricerca di un commune meccanismo neurofisiologico // Networks. 2003. Vol. 1. P. 24-47.
Pascolo P.B., Ragogna P., Rossi R. The mirror-neuron system paradigm and its consistency // Gait & Posture. 2009. Vol. 30. S65. DOI: 10.1016/j.gaitpost.2009.07.064
Hickok G. Eight problems for the mirror neuron theory of action understanding in monkeys and humans // Journal of Cognitive Neuroscience. 2009. Vol. 21 (7). P. 1229-1243. DOI: 10.1162/jocn.2009.21189
Савельев А.В. Зеркальные нейроны // Нейрокомпьютеры: разработка, применение. 2017. № 8. С. 58-64.
Соколов Е.Н. Восприятие и условный рефлекс. М. : Изд-во Моск. ун-та, 1958. 330 с.
Lago-Rodriguez A., Cheeran B., Koch G., Hortobagy T., Fernandez-del-Olmo M. The role of mirror neurons in observational motor learning: an integrative review // European Journal of Human Movement. 2014. Vol. 32. P. 82-103.
Buccino G., Binkofski F., Fink G.R., Fadiga L., Fogassi L., Gallese V., Seitz R.J., Zilles K., Rizzolatti G., Freund H.J. Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study // Eur. J. Neurosci. 2001. Vol. 13 (2). P. 400404.
Rizzolatti G., Cattaneo L., Fabbri-Destro M., Rozzi S. Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding // Physiological Reviews. 2014. Vol. 94 (2). P. 655-706. DOI: 10.1152/physrev.00009.2013
Fabbri-Destro M., Rizzolatti G. Mirror neurons and mirror systems in monkeys and humans // Physiology. 2008. Vol. 23 (3). P. 171-179. DOI: 10.1152/physiol.00004.2008
Heyes C. Causes and consequences of imitation // Trends in Cognitive Sciences. 2001. Vol. 5 (6). P. 253-261. DOI: 10.1016/S1364-6613(00)01661-2
Cattaneo L., Rizzolatti G. The mirror neuron system // Archives of Neurology. 2009. Vol. 66 (5). P. 557-560. DOI: 10.1001/archneurol.2009.41
Brass M., Bekkering H., Wohlschlager A., Prinz W.Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues // Brain and cognition. 2000. Vol. 44 (2). P. 124-143. DOI: 10.1006/brcg.2000.1225
Schutz-Bosbach S., Prinz W. Perceptual resonance: action-induced modulation of perception // Trends in Cognitive Sciences. 2007. Vol. 11 (8). P. 349-355. DOI: 10.1016/j.tics.2007.06.005
Canal-Bruland R., Williams A.M. Recognizing and predicting movement effects: identifying critical movement features // Experimental psychology. 2010. Vol. 57 (4). P. 320326. DOI: 10.1027/1618-3169/a000038
Knoblich G., Flach R. Predicting the effects of actions: Interactions of perception and action // Psychological science. 2001. Vol. 12 (6). P. 467-472. DOI: 10.1111/14679280.00387
Aglioti S.M., Cesari P., Romani M., Urgesi C. Action anticipation and motor resonance in elite basketball players // Nature neuroscience. 2008. Vol. 11 (9). P. 1109-1116. DOI: 10.1038/nn.2182
Calvo-Merino B., Glaser D.E., Grezes J., Passingham R.E., Haggard P. Action observation and acquired motor skills: an FMRI study with expert dancers // Cerebral Cortex. 2005. Vol. 15 (8). P. 1243-1249. DOI: 10.1093/cercor/bhi007
Cross E.S., Hamilton A.F.D.C., Grafton S.T. Building a motor simulation de novo: observation of dance by dancers // Neuroimage. 2006. Vol. 31 (3). P. 1257-1267. DOI: 10.1016/j.neuroimage.2006.01.033
Crone E.A., Steinbeis N. Neural perspectives on cognitive control development during childhood and adolescence // Trends in cognitive sciences. 2017. Vol. 21 (3). P. 205-215. DOI: 10.1016/j.tics.2017.01.003
Семенова Л.К., Васильева В.В., Цехмитренко Т.А. Структурные преобразования коры большого мозга человека в постнатальном онтогенезе // Структурнофункциональная организация развивающегося мозга. Л. : Наука, 1990. С. 8-45.
Батуев А.С. Высшие интегративные системы мозга. Л. : Наука, 1981. 255 с.
Nauta W.J. The problem of frontal lobe: a reintegration //j. Psychiat. Res. 1971. Vol. 8. P. 167-187. DOI: 10.1016/0022-3956(71)90017-3
Pribram K. The Far Frontal Cortex as Executive Processor: Proprieties and Practical Interference // Downward Processes in the Perception Representation Mechanisms / C. Taddei-Ferretti, C. Musio (eds.); Istituto Italiano per Gli Studi Filosofici Series on Biophysics and Biocybernetics. 1998. Vol. 6: Biocybernetics. P. 546-578.
Развитие мозга ребенка / под ред. С.А. Саркисова. Л. : Медицина, 1965. 340 с.
Дзугаева С.Б. Проводящие пути головного мозга человека (в онтогенезе). М. : Медицина, 1975. 247 с.
Huttenlocher P.R., Dabholcar A.S. Developmental Anatomy of Prefrontal Cortex // Developmental of the Prefrontal Cortex: Evolution, Neurobiology, and Behavior / N.A. Krasnegor, G.R. Lyon, P.S. Goldman-Rakic (eds.). 1997. P. 69-83.
 Psychological and Psychophysiological Mechanisms of Motor Skill Training | Sibirskiy Psikhologicheskiy Zhurnal – Siberian Journal of Psychology. 2021. № 82. DOI: 10.17223/17267080/82/4

Psychological and Psychophysiological Mechanisms of Motor Skill Training | Sibirskiy Psikhologicheskiy Zhurnal – Siberian Journal of Psychology. 2021. № 82. DOI: 10.17223/17267080/82/4

Download full-text version
Counter downloads: 333