Problems of digital intercultural communication in Slavic languages | Rusin. 2025. № 80. DOI: 10.17223/18572685/80/14

Problems of digital intercultural communication in Slavic languages

This study addresses the problem of interlingual digital communication on the Internet, with the focus on the quality of automated interLanguage translation. The primary aim is to investigate the quality of digitally translated texts from various Slavic languages into Russian. The research objectives are to identify the types of errors that cause communicative breakdowns and to explain the underlying reasons for these translation failures. To assess translation quality, a comprehensive comparative systemic-functional approach was employed. This methodology involves a comparative analysis of original SLavic-Language texts and their Russian translations, alongside an interpretation of translation failures that considers the systemic features of both the source Slavic languages and the intermediary language - English. The novelty of this research stems from its inclusion of multiple Slavic Languages in the analysis of digital translation, revealing how translation outcomes are influenced by English, the Language in which most digital translation systems are engineered. The corpus for analysis consisted of texts translated from Bulgarian, Polish, Czech, and other Slavic Languages. The comparative analysis established that communicative failures occur at aLL Linguistic Levels: Lexico-semantic, derivational, and grammatical, as weLL as at the Level of evaLuative and modaL framing of situations. The practical significance of the study Lies in assessing the quaLity of digitaL transLation, systematising transLation errors, identifying the Linguistic causes of digitaL transLation faiLures, and determining the socio-cuLturaL consequences of information distortion in digital translation in various domains. The findings indicate that improving digital translation models for Slavic Languages requires greater attention to their unique lexico-semantic, derivational, and grammatical specifics, as well as to the peculiarities of national realities and cultures.

Download file
Counter downloads: 1

Keywords

intercultural communication, Slavic languages, digital translation, intermediary language, communicative errors

Authors

NameOrganizationE-mail
Karpenko Liudmila B.Samara National Research University named after Academician S.P. Korolevliudmila.karpenko.53@mail.ru
Всего: 1

References

Ван Дейк Т.А., Кинч В. Стратегии понимания связного текста // Новое в зарубежной лингвистике. Вып. 23. М.: Прогресс, 1988. С.153 - 211.
Карпенко Л.Б. Цифровая коммуникация и проблемы перевода (на материале болгарских и русских сетевых текстов // Foreign Language teaching. 2021. № 48. С. 231-240.
Колокольцева Т.Н.,Лутовинова О. В. Интернет-коммуникация как новая речевая формация. М.: Флинта, 2018. 328 с.
Константинов А. Бай Ганьо. София: Пан "96", 2005. 253 с.
Переходько И.В, Мячин Д.А. Оценка качества компьютерного перевода // Вестник Оренбургского государственного университета. 2017. № 202. С. 92-96.
Убин И.И. Современные средства автоматизации перевода: надежды, разочарования и реальность // Перевод в современном мире. М.: Всероссийский центр переводов научно-технической литературы, 2001. С. 60-69.
Якобсон Р.О. О лингвистических аспектах перевода // Избранные труды. М.: Прогресс,1985. С. 361-368.
Amram A., Ben David A., Tsarfaty R. Representations and architectures in neural sentiment analysis for morphologically rich Languages: Case study from modern Hebrew // Proceedings of the 27th International Conference on Computational Linguistics, Santa Fe, New Mexico, 20-26 August 2018. Р. 2242-2252. URL: https://aclanthology.org/C18-1190 (дата обращения: 25.01.20233).
Baden Ch. et al. Three Gaps in Computational Text Analysis. Methods for Social Sciences: A Research Agenda // Communication Methods and Measures. 2021. № 16. Р 1-18. URL: https://www.researchgate.net (дата обращения: 30.03.2023).
Bartlett F.C. Remembering: a Study in Experimental and Social Psychology. Lodon: Cambridge: University Press, 1932. 317 p.
Bobrow D.G., Collins A. Representation and Understanding: Studies in Cognitive Science. New York: Academic Press, 1976. 427 p.
Brady H.E. The challenge of big data and data science // Annual Review of Political Science. 2019. № 22. Р 297-323.
Clark H.H. Psychology and Language: an Introduction to Psycholinguists. New York: Harcourt Brace Jovanovich, 1977. 608 p.
Facebook: URL: https://www.facebook.com.
Fodor J.A., Bever T.G., Garret M.F. The Psychology of Language. New York: McGraw-Hill, 1974. 537 p.
Most popular social networks worldwide as of February 2025, by number of monthly active users. URL: https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/(дата обращения: 30.03.2025).
Nagao M.A. New Method of N-gram Statistics for Large Number of n and Automatic Extraction of Words and Phrases from Large Text Data of Japanese // Proceedings of the 15th International Conference on Computational Linguistics. Kyoto, 1994. Vol. 1. Р 611-615.
Stypuia R., Kowaloowa G. Stownik polsko-rosyjski. Warszawa; Moskwa: Wiedza powszechna - Russkij Jazyk, 1975. 839.
Hasek J. Osudy dobreho vojaka Svejka za svftove valky. M.: T8RUGRAM, 2016. 392 р.
 Problems of digital intercultural communication in Slavic languages | Rusin. 2025. № 80. DOI: 10.17223/18572685/80/14

Problems of digital intercultural communication in Slavic languages | Rusin. 2025. № 80. DOI: 10.17223/18572685/80/14

Download full-text version
Counter downloads: 186